2. Your first $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ assignment is to use $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ to produce a document that replicates this as exactly as possible, with just two differences: First, replace the name above with your own. Second, make the following letter substitutions so that I know that you did not just photocopy this document:

- Problems 3 and 5, change each $m$ to $n$;
- Problem 8, change each $c$ to $b$.

Your grade on this assignment will be based on how much your paper looks like this one.
3. Prove that every integer that is divisible by 6 is even.

Proof. Suppose $m \in \mathbb{Z}$ is divisible by 6 . Then there is some $k \in \mathbb{Z}$ such that $m=6 k$. Therefore $m=2(3 k)$, and since $3 k$ is also in $\mathbb{Z}$, this means that $m$ is divisible by 2 and therefore that $m$ is even.
5. Define $A=\left\{m \in \mathbb{Z} \mid m^{3}-m^{2}-6 m=0\right\}$. Prove that if $m \in A$ then $m=-2,0$, or 3 .

Proof. Let $A=\left\{m \in \mathbb{Z} \mid m^{3}-m^{2}-6 m=0\right\}$. Note that

$$
\begin{aligned}
m^{3}-m^{2}-6 m & =m\left(m^{2}-m-6\right) & \text { (factor out an } m \text { ) } \\
& =m(m+2)(m-3) . & \text { (factor the quadratic) }
\end{aligned}
$$

Therefore if $m \in A$ then $m(m+2)(m-3)=0$, and therefore $m$ must be equal to one of $-2,0$, or 3 .
8. Prove that if $a, c \in \mathbb{R}$ with $a \leq c$ then $[c, \infty) \subseteq[a, \infty)$.

Proof. Suppose $a \leq c$ in $\mathbb{R}$. For all $x \in \mathbb{R}$,

$$
\begin{array}{rlr}
x \in[c, \infty) & \Longrightarrow x \geq c & \\
& \Longrightarrow x \geq c \geq a & (c \geq a \text { by hypothesis) } \\
& \Longrightarrow x \geq a & \text { (transitivity) } \\
& \Longrightarrow x \in[a, \infty) . &
\end{array}
$$

Therefore we have $[c, \infty) \subseteq[a, \infty)$.

