Worksheet 8 (4.3, Appendix B)

Name:
Section:

For full credit, you must show all work and box answers.

1. A 1 kilogram mass is attached to a spring whose constant is $16 \mathrm{~N} / \mathrm{m}$, and the entire system is then submerged in a liquid that imparts a damping force such that the damping constant is 10 .
(a) Find the general solution for $y(t)$, the position of the mass at time t, when there is no external force.
(b) Find the position of the mass at time t if the mass is released from 1 m below the equilibrium position $(y(0)=1)$ with no initial velocity, with no external force.
(c) Find the position of the mass at time t if the mass is released 1 m below the equilibrium position $(y(0)=1)$ with an upward velocity of $12 \mathrm{~m} / \mathrm{s}(v(0)=-12)$, with no external force.
(d) Now add an external force, $f(t)=2 \sin (3 t)$, to the harmonic oscillator. Find the general solution for the position of the mass at time t.
2. Consider the forced but undamped harmonic oscillator:
$y^{\prime \prime}+y=3 \cos (\omega t), \quad y(0)=0, \quad y^{\prime}(0)=0$.
(a) Find the particular solution for $\omega=\frac{9}{10}$. What phenomenon occurs at this value of ω ?
(b) For ω from part (a), determine the frequency of beats and the frequency of rapid oscillations.
(c) For ω from part (a), how many rapid oscillations are there per beat?
(d) Find the particular solution for $\omega=1$. What phenomenon occurs at this value of ω ?
3. Using the power series method on $(1-t) \frac{d y}{d t}=y$,
(a) find the recurrence relation.
(b) Find the power series solution and then, using a known Taylor Series, write your answer in the form $y=f(t)$ (where $f(t)$ is not a series).
4. Using the power series method on $\left(1+t^{2}\right) y^{\prime \prime}-4 t y^{\prime}+6 y=0$,
(a) find the recurrence relation.
(b) Find the power series solution and write your answer in the form $y=f(t)$ (where $f(t)$ is not a series).
(c) Solve for the unknown constants a_{0} and a_{1} using the initial condition $y(0)=2$ and $y^{\prime}(0)=-1$, and state the particular solution.
