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3.9 Elementary operations and Gaussian
Elimination

[ am assuming that you’ve seen this before, so this is a very terse review. If not, see the
book by Strang in the bibliography.

Elementary matrix operations consist of:

If you have a matrix that can be derived from another matrix by a sequence of elementary
operations, then the two matrices are said to be row or column equivalent. For example

1 2 4 3
A=12 1 3 2
1 -1 2 3
is row equivalent to
2 4 8 6
B=]1 -1 2 3
4 -1 7 8
because we can add 2 times row 3 of A to row 2 of A; then interchange rows 2 and 3;

finally multiply row 1 by 2.

Gaussian elimination consists of two phases. The first is the application of elementary
operations to try to put the matrix in row-reduced form; i.e., making zero all the elements
below the main diagonal (and normalizing the diagonal elements to 1). The second
phase is back-substitution. Unless the matrix is very simple, calculating any of the four
fundamental subspaces is probably easiest if you put the matrix in row-reduced form
first.

3.9.1 Examples

1. Find the row-reduced form and the null-space of

(g e gt

6
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Answer A row-reduced form of the matrix is

1 2 3
01 2

Now, some people reserve the term row-reduced (or row-reduced echelon) form for
the matrix that also has zeros above the ones. We can get this form in one more

step:
1 0 =1
01 2

The null space of A can be obtained by solving the system

1o -1\("™) (o
01 2 2 )=o)
T3
So we must have x; = x3 and x5 = —2x3. So the null space is is the line spanned

by
(1,-2,1)

. Solve the linear system Ax =y with y = (1, 1):

Answer

Any vector of the form (z — 1,1 — 2z, z) will do. For instance, (—1,1,0).

. Solve the linear system Ax =y with y = (0, —1):

Answer One example is

(219
3’3

. Find the row-reduced form and the null space of the matrix

1 2 3
B=|4 5 6
7 8 9
Answer The row-reduced matrix is
1 0 -1
01 2
00 O

The null space is spanned by
(1,—-2,1)
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5. Find the row-reduced form and the null space of the matrix

Row (ZeaQ UOQK_C‘L

1 2 3
C=1456
1 01

Answer The row-reduced matrix is

The only element in the null space is the zero vector.

6. Find the null space of the matrix

1 11
b= ( 102 )
Answer You can solve the linear system Dx =y with y = (0,0,0) and discover

that 1 = —2x3 = —2x5. This means that the null space is spanned (—2,1,1). The
row-reduced form of the matrix is

1 0 2
01 -1

7. Are the following vectors in R? linearly independent or dependent? If they are
dependent express one as a linear combination of the others. N . Cofv MRGCQ (qy

1 0 1 3 - Q"“M‘CP"T\

1. {2],12]1].,]6
0) \3/) \3/) \e

Answer The vectors are obviously dependent since you cannot have four linearly
independent vectors in a three dimensional space. If you put the matrix in row-
reduced form you will get

1 00
010
0 01
0 00

The first three vectors are indeed linearl
of

independent. Note that the determinant

wo o =

1
1
0

W N =
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is equal to 3.

To find the desired linear combination we need to solve:

1 0 1 3
el 1| +y|l 2| +z|2|=]6¢6
0 3 3 6
101 x 3
122 y =16
03 3 2 6

Gaussian elimination could proceed as follows (the sequence of steps is not unique
of course): first divide the third row by 3

1 01 3
1 2 6
011 2
1 01 3
021 3
011 2
10 1 3
00 -1 -1
01 1 2
1 013
0011
0101
1 013
0101
0011

Thus we have z = y = 1 and x 4+ z = 3, which implies that x = 2. So, the solution
is (2,1,1) and you can verify that

1 0 1 3
2( 1 | +1| 2 |+1[ 2 |=]6
0 3 3 6

3.10 Least Squares

In this section we will consider the problem of solving Ax =y when no solution exists!
I.e., we consider what happens when there is no vector that satisfies the equations ex-
actly. This sort of situation occurs all the time in science and engineering. Often we
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