Undergraduate Classical Mechanics PHGN350
Solutions to Numerical Homework |
August 2011

= |n good programming practice, you must define all your variablesin comments. Thiswill berequired in future
notebooks.

t=time

y = distance between center of mass of probe and surface
v = velocity

a= acceleration

r = distance between center of mass of probe and center of mass of Mars
rMars = radius of Mars

rProbe = radius of probe

mMars = mass of Mars

mProbe = mass of probe

p = density of Martian atmosphere

0 = surface density of Martian atmosphere

yO0 = scale height of density of Martian atmosphere

h =initial height of probe

fAtmo = atmospheric force (scaled to probe mass in equations below)
fGrav = gravitational force

cd = dimensionless drag coefficient

area = cross-sectional area of probe

gravConst = graviational constant

t=time

yData = {t,distance dropped}

vData = {t, velocity}

aData = {t, acceleration}

j = integer iterator for loop

stepSize = time step size

maxSteps = maximum number of steps allowed in loop
thisAcceleration = storage variable in loop

Let's set up the equationsfirst.
m Make some overall definitions, and set our parameter list. These should bethingsthat WILL NOT change from study
to study. Stuff that will change from study to study is better included in an input list for your modules.
1
nE7= fALND = > cd p area v?;
p =p0 Exp[-y /YyO0];
gravConst nMars nProbe

fGrav = - ;
r2

area = srProbe?;
r=rhMars +y;

Using Newton's second law

2| NHWI-David.nb

1
n42)= al = —— (fAtno +f Grav)
nPr obe

gravConst nmivar s nPr obe
(rMars+y)?

v
+% cd e v srProbe? v2 p0
out[42]=

nPr obe
n43= a2 = Sionplify[al]

v
gravConst mvars cd e v srProbe? vZ p0
out[43]= — 4

(rvars +y)? 2 nPr obe

Although | have defined symbols with equal signs, they are only defined in terms of other symbols. | use a parameter list to
define symbols as numbers.

ni44= params = {cd » 0.2, gravConst - 6. 673 « 107!, mMars - 6. 419 « 10%°,
nmProbe -» 10, y0 » 11.1 *10%, p0 » 0. 02, rProbe » 5, rMars - 3390 * 103};

Martian constants came from the NASA website, using the Mars Fact Sheet: http://nssdc.gsfc.nasa.gov/planetary/factsheet/mars-
fact.html

Asatest, if | substitute these parameters into the acceleration, | get a function only of y and v. If anything else is left, it will not
give me numbers when | plug it into my loop.

In@4si= a2 /. parans
4. 2834 x 1013
(3390000 +y)?

oussl- 0. 015708 -0 0000900901y ;2

As| mentioned in lecture several time, in numerical methods one discretizes the governing equations. In the following solution, |
discretize the equations in time: Vi1 = Vy + an df, Y1 = Yot Vi di+ &, dt*2,, and ty,1 = t, +dt. The grid over t runs from n=1to
some large N which will correspond to when the probe hits the planet. The stepsize is the time resolution, dt. An initial condi-
tion is required for the following method, called a shooting method. The shooting method is good for ordinary differential
eguations in one dimension.

NHW1-David.nb |3

= 1) Makethefunction that will calculate

in4el= | oadData[tMax_, dt_, h_, print_] :=Mdule[{i, i Max, lastl},
(*Get the maxi mum nunber of iterations possiblex)
i Max = Fl oor [t Max /dt] +1;
aFunc[y_, v_] =a2 /. pararrs;
(x»Initialize the tables that will be solved for,
and fill themw th the associated tinmesx)
yData = Table[{dt = (i -1), O}, {i, 1, i Max}];
vData = Table[{dt = (i -1), 0}, {i, 1, i Max}];
abData = Table[{dt » (i -1), 0}, {i, 1, i Max}];
(xSet the initial val uesx)
ybata[[1l, 2]] = h;
(*Run the calculation in a loop. | prefer Do | oops in nathenmati ca,
but Wiile, and For are just as good. Wile is honestly the best in this case,
because it allows you to break out of
the | oop without using the Break command.)
lastl =1;
Do[{
lastl =i;
(»Get the acceleration at the current tinesx)
aDataf[[i, 2]] =aFunc[yData[[i, 211, vData[[i, 2]111;
(»CGet the velocity and position at the next tinex)
vData[[i +1, 2]] =vData[[i, 2]] +abata[[i, 2]] »dt;
yData[[i +1, 2]] =yDataf[[i, 2]] +vDataf[[i, 2]] »dt +0.5abData[[i, 2]] »dt *2;
(*Check to see if you' re donex)
I f [yData[[i +1, 2]] <5,

If[print, Print["Final i: ", i1;
Print["Final time: ", dt %i];
Print ["Final y: ", yData[[i, 2]11;
Print ["Final v: ", vData[[i, 2]111;

Print ["Final a: ", aDatal[[i, 2111;1;

(*At this point |I strip off the extra elenents of the table. You don't
have to do this, but it will nmake the plots look a little nicer. You
won't have to deal with all the zeros that were left over. x)

yData = Drop[yData, - (i Max -i -1)1;
vData = Drop[vData, - (i Max -i -1)17;
aData =Drop[aData, - (i Max -i -1)1;
Break[]1];

}, {i, 1, iMax -1}1;

(lastl -1)
IN
Now | define some plots that | am going to use later. | do it with the := so that it doesn’t evaluate them right now, so | can just use

their variable to evaluate whatever yData or vData happend to be when | evaluate them. Be sure to include labels as well as units
in the labels!

4| NHW1-David.nb

n471= py : = Li st Pl ot [yData, AxesLabel - {"tine (s)", "height above surface (m"}];
pv : = ListPl ot [vData, AxesLabel -» {"tinme (s)", "velocity (nvs)"}, PlotRange -» All 1;
pa: = Li st Pl ot [aDat a,
AxeslLabel -» {"tinme (s)", "acceleration (nvs”2)"}, PlotRange » Al 1;

= Done Programming, now answer questions!

Now | can just solve the problem by running my module. If you want the module to return something in particular, such as the
time, you just need to put it in at the end of the Module without a semicolon. | did this with the final i, so | can use that to get
different final variables out (see the limiting case below). | already printed out the answers to what the final position, time,
velocity and acceleration are.

nis0)= | oadDat a[3000, 0.5, 1*"6, True]
Final i: 4327

Final tine: 2163.5

Final y: 10.6284

Final v: -15.4334

Final a: 0.0106862

outs0l= 4326

m 2) Plot the acceleration, velocity and position as functions of time

In51]:= py
height above surface (m)

1x10°

800000
600000 |
out[s1]= -

400000

200000

e TS © time (9
500 1000 1500 2000

NHW1-David.nb |5

In[52]:= PV

velocity (m/s)

i tiTIE (S)
500 ﬁUU 1500 2000

500
Out[52]= _1000 L

_1500

—2000|

In[53:= pa

acceleration (m/s"\2)

80+

Out[53]= L
40

22520362803 o8 £o% 8 Lo S 0 oo

20

L Il L L L L i i L tl me (S)
=500 1000 1500 2000

Thereisagreat deal of physicsto see here. One can see the "bounce" on the atmosphere.

Note that since | didn’t make it to my max time, my problem really ends at

m 3) Theanswersare actually printed out where| solved it above. | resolveit hereto show it again.

ins41= | oadDat a[3000, 0.1, 1*"6, True];
Final i: 21628

Final tine: 2162.8

Final y: 6.51592

Final v: -15.4306

Final a: 0.0106852

= 4) What are the maximum values of aand v asit falls?

inssl= maxV = Max [Tabl e[-vData[[i, 2]]1, {i, 1, Length[vData]}]]
outs51= 2208. 89

6 | NHWI1-David.nb

insel= maxA = Max [Tabl e[aDataf[[i, 2]], {i, 1, Length[aData]}]]
outs6l= 86. 1212

= 5) Now do it where h=10m. Notice | decreased my tMax and my dt.
ns7:= i Final = | oadDat a[30, 0.001, 10, True]

Final i: 1660

Final tine: 1.66

Final y: 5.00267

Final v: -5.87188

Final a: -3.18589

out57= 1659

In[s8]:= Py

height above surface (m)

out[58]=

time (s)

In[59]:= PV

velocity (m/s)

1 1 1 1 1 1 1 1 tlme (S)
05 10 15

out[59]=

NHW1-David.nb |7

In[60]:= pa

acceleration (m/s"\2)

1 L L L L 1 L L L L 1 L t|me (S)
5 0.5 1.0 15

-05[

-10[

-15F

Out[60]= [

-20F

-25F

-30F

35

We are till hitting drag, since the acceleration is decreasing. However, the height is nearly quadratic and the velocity is nearly
linear, so it should be close to the no-drag calculation.

Now compare this to the constant gravitational field, no drag prediction. For that, we need g for Mars at the surface. Let's
calculate it using our constants.

ne1]= gvars = gravConst =mvars /rNMars”2 /. parans
outel= 3. 72725

1
ine2)= s1 = Sol ve[5 =10 - E ghars tine? /. parans, ti rre]
ouez)= { {time - -1.63797}, {tine - 1.63797}}

ine3:= approxTime =time /. s1[[2]]
outes= 1. 63797

Calculate percent error
x1-x2

ine4:= percent Error [x1_, x2_]1 = 100 % Abs [— ;
% (X1 +x2)

Percent error intimeis

nesi= myT = yDatal[[i Final, 1]17;
percent Error [nmyT, approxTi ne]

outjeel= 1. 21554

The error is about 1.2%. We can also check velocity and acceleration.
in67:= appr oxV = -ghar s appr oxTi me /. par ans

out671= —6. 10512

ines;= myV = vData[[i Final, 211;
percent Error [nmyV, approxV]

oute9)= 3. 94907

8| NHWI1-David.nb

o= approxV=tine /. s1[[2]]
ouf7o)= 1. 63797
7= myA = abataf[[i Final, 2]1;
percent Error [myA, -ghars /. parans]
ou72)= 15. 6435

The velocity and acceleration yield 3.95% and 15.6% errors, respectively.

Remark:

Thisimplementation of the shooting method is only good for very small time steps, as the error is proportional to dt. Higher order
methods will have error proportional to dt? or even dt°.

