
Undergraduate Classical Mechanics PHGN350
Solutions to Numerical Homework I
August 2011

� In good programming practice, you must define all your variables in comments. This will be required in future
notebooks.

t = time
y = distance between center of mass of probe and surface
v = velocity
a = acceleration
r = distance between center of mass of probe and center of mass of Mars
rMars = radius of Mars
rProbe = radius of probe
mMars = mass of Mars
mProbe = mass of probe
Ρ = density of Martian atmosphere
Ρ0 = surface density of Martian atmosphere
y0 = scale height of density of Martian atmosphere
h = initial height of probe
fAtmo = atmospheric force (scaled to probe mass in equations below)
fGrav = gravitational force
cd = dimensionless drag coefficient
area = cross-sectional area of probe
gravConst = graviational constant
t = time
yData = {t,distance dropped}
vData = {t, velocity}
aData = {t, acceleration}
j = integer iterator for loop
stepSize = time step size
maxSteps = maximum number of steps allowed in loop
thisAcceleration = storage variable in loop

Let's set up the equations first.

� Make some overall definitions, and set our parameter list. These should be things that WILL NOT change from study
to study. Stuff that will change from study to study is better included in an input list for your modules.

In[37]:= fAtmo =
1

2
cd Ρ area v2;

Ρ = Ρ0 Exp@-y � y0D;

fGrav = -
gravConst mMars mProbe

r2
;

area = Π rProbe2;

r = rMars + y;

Using Newton's second law

In[42]:= a1 =
1

mProbe
HfAtmo + fGravL

Out[42]=

-
gravConst mMars mProbe

HrMars+yL2 +
1

2
cd ã

-
y

y0 Π rProbe2 v2 Ρ0

mProbe

In[43]:= a2 = Simplify@a1D

Out[43]= -
gravConst mMars

HrMars + yL2
+

cd ã
-

y

y0 Π rProbe2 v2 Ρ0

2 mProbe

Although I have defined symbols with equal signs, they are only defined in terms of other symbols. I use a parameter list to
define symbols as numbers.

In[44]:= params = 9cd ® 0.2, gravConst ® 6.673 * 10-11, mMars ® 6.419 * 1023,

mProbe ® 10, y0 ® 11.1 * 103, Ρ0 ® 0.02, rProbe ® 5, rMars ® 3390 * 103=;

Martian constants came from the NASA website, using the Mars Fact Sheet: http://nssdc.gsfc.nasa.gov/planetary/factsheet/mars-
fact.html

As a test, if I substitute these parameters into the acceleration, I get a function only of y and v. If anything else is left, it will not
give me numbers when I plug it into my loop.

In[45]:= a2 �. params

Out[45]= 0.015708 ã-0.0000900901 y v2 -
4.2834 ´ 1013

H3 390 000 + yL2

As I mentioned in lecture several time, in numerical methods one discretizes the governing equations. In the following solution, I
discretize the equations in time: vn+1 = vn + an dt, yn+1 = yn+ vn dt+ an dt^2,, and tn+1 = tn +dt. The grid over t runs from n=1 to
some large N which will correspond to when the probe hits the planet. The stepsize is the time resolution, dt. An initial condi-
tion is required for the following method, called a shooting method. The shooting method is good for ordinary differential
equations in one dimension.

2 NHW1-David.nb

� 1) Make the function that will calculate

In[46]:= loadData@tMax_, dt_, h_, print_D := Module@8i, iMax, lastI<,

H*Get the maximum number of iterations possible*L
iMax = Floor@tMax � dtD + 1;

aFunc@y_, v_D = a2 �. params;

H*Initialize the tables that will be solved for,

and fill them with the associated times*L
yData = Table@8dt * Hi - 1L, 0<, 8i, 1, iMax<D;

vData = Table@8dt * Hi - 1L, 0<, 8i, 1, iMax<D;

aData = Table@8dt * Hi - 1L, 0<, 8i, 1, iMax<D;

H*Set the initial values*L
yData@@1, 2DD = h;

H*Run the calculation in a loop. I prefer Do loops in mathematica,

but While, and For are just as good. While is honestly the best in this case,

because it allows you to break out of

the loop without using the Break command.*L
lastI = 1;

Do@8
lastI = i;

H*Get the acceleration at the current time*L
aData@@i, 2DD = aFunc@yData@@i, 2DD, vData@@i, 2DDD;

H*Get the velocity and position at the next time*L
vData@@i + 1, 2DD = vData@@i, 2DD + aData@@i, 2DD * dt;

yData@@i + 1, 2DD = yData@@i, 2DD + vData@@i, 2DD * dt + 0.5 aData@@i, 2DD * dt^2;

H*Check to see if you're done*L
If@yData@@i + 1, 2DD < 5,

If@print, Print@"Final i: ", iD;

Print@"Final time: ", dt * iD;

Print@"Final y: ", yData@@i, 2DDD;

Print@"Final v: ", vData@@i, 2DDD;

Print@"Final a: ", aData@@i, 2DDD;D;

H*At this point I strip off the extra elements of the table. You don't

have to do this, but it will make the plots look a little nicer. You

won't have to deal with all the zeros that were left over.*L
yData = Drop@yData, -HiMax - i - 1LD;

vData = Drop@vData, -HiMax - i - 1LD;

aData = Drop@aData, -HiMax - i - 1LD;

Break@DD;

<, 8i, 1, iMax - 1<D;

HlastI - 1L
D;

Now I define some plots that I am going to use later. I do it with the := so that it doesn’t evaluate them right now, so I can just use
their variable to evaluate whatever yData or vData happend to be when I evaluate them. Be sure to include labels as well as units
in the labels!

NHW1-David.nb 3

In[47]:= py := ListPlot@yData, AxesLabel ® 8"time HsL", "height above surface HmL"<D;

pv := ListPlot@vData, AxesLabel ® 8"time HsL", "velocity Hm�sL"<, PlotRange ® AllD;

pa := ListPlot@aData,

AxesLabel ® 8"time HsL", "acceleration Hm�s^2L"<, PlotRange ® AllD;

� Done Programming, now answer questions!

Now I can just solve the problem by running my module. If you want the module to return something in particular, such as the
time, you just need to put it in at the end of the Module without a semicolon. I did this with the final i, so I can use that to get
different final variables out (see the limiting case below). I already printed out the answers to what the final position, time,
velocity and acceleration are.

In[50]:= loadData@3000, 0.5, 1*^6, TrueD
Final i: 4327

Final time: 2163.5

Final y: 10.6284

Final v: -15.4334

Final a: 0.0106862

Out[50]= 4326

� 2) Plot the acceleration, velocity and position as functions of time

In[51]:= py

Out[51]=

500 1000 1500 2000
time HsL

200 000

400 000

600 000

800 000

1 ´ 106

height above surface HmL

4 NHW1-David.nb

In[52]:= pv

Out[52]=

500 1000 1500 2000
time HsL

-2000

-1500

-1000

-500

velocity Hm�sL

In[53]:= pa

Out[53]=

500 1000 1500 2000
time HsL

20

40

60

80

acceleration Hm�s^2L

There is a great deal of physics to see here. One can see the "bounce" on the atmosphere.

Note that since I didn’t make it to my max time, my problem really ends at

� 3) The answers are actually printed out where I solved it above. I resolve it here to show it again.

In[54]:= loadData@3000, 0.1, 1*^6, TrueD;

Final i: 21 628

Final time: 2162.8

Final y: 6.51592

Final v: -15.4306

Final a: 0.0106852

� 4) What are the maximum values of a and v as it falls?

In[55]:= maxV = Max@Table@-vData@@i, 2DD, 8i, 1, Length@vDataD<DD
Out[55]= 2208.89

NHW1-David.nb 5

In[56]:= maxA = Max@Table@aData@@i, 2DD, 8i, 1, Length@aDataD<DD
Out[56]= 86.1212

� 5) Now do it where h=10m. Notice I decreased my tMax and my dt.

In[57]:= iFinal = loadData@30, 0.001, 10, TrueD
Final i: 1660

Final time: 1.66

Final y: 5.00267

Final v: -5.87188

Final a: -3.18589

Out[57]= 1659

In[58]:= py

Out[58]=

0.5 1.0 1.5
time HsL

6

7

8

9

10

height above surface HmL

In[59]:= pv

Out[59]=

0.5 1.0 1.5
time HsL

-6

-5

-4

-3

-2

-1

velocity Hm�sL

6 NHW1-David.nb

In[60]:= pa

Out[60]=

0.5 1.0 1.5
time HsL

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

acceleration Hm�s^2L

We are still hitting drag, since the acceleration is decreasing. However, the height is nearly quadratic and the velocity is nearly
linear, so it should be close to the no-drag calculation.

Now compare this to the constant gravitational field, no drag prediction. For that, we need g for Mars at the surface. Let’s
calculate it using our constants.

In[61]:= gMars = gravConst * mMars � rMars^2 �. params

Out[61]= 3.72725

In[62]:= s1 = SolveB5 � 10 -
1

2
gMars time2 �. params, timeF

Out[62]= 88time ® -1.63797<, 8time ® 1.63797<<

In[63]:= approxTime = time �. s1@@2DD
Out[63]= 1.63797

Calculate percent error

In[64]:= percentError@x1_, x2_D = 100 * AbsB
x1 - x2

1

2
Hx1 + x2L

F;

Percent error in time is

In[65]:= myT = yData@@iFinal, 1DD;

percentError@myT, approxTimeD
Out[66]= 1.21554

The error is about 1.2%. We can also check velocity and acceleration.

In[67]:= approxV = -gMars approxTime �. params

Out[67]= -6.10512

In[68]:= myV = vData@@iFinal, 2DD;

percentError@myV, approxVD
Out[69]= 3.94907

NHW1-David.nb 7

In[70]:= approxV = time �. s1@@2DD
Out[70]= 1.63797

In[71]:= myA = aData@@iFinal, 2DD;

percentError@myA, -gMars �. paramsD
Out[72]= 15.6435

The velocity and acceleration yield 3.95% and 15.6% errors, respectively.

Remark:
This implementation of the shooting method is only good for very small time steps, as the error is proportional to dt. Higher order

methods will have error proportional to dt2 or even dt5.

8 NHW1-David.nb

