
MATH332-Linear Algebra Homework Seven Solutions

Least-Squares, Gram-Schmidt, Orthogonal Diagonalization, SVD

Text: Chapter 6-7 Section Overviews: 6.1-6.6, 7.1-7.2

Quote of Homework Seven Solutions

Don’t believe the florist when he tells you that the roses are free.

Ween : Roses are Free (1994)

1. Geometry in Rn

1.1. Parallelogram Identity. Let u,v∈ Rn. Prove that ||u + v||2 + ||u− v||2 = 2||u||2 + 2||v||2.

1.2. Orthogonal Complements. Let W be a subspace of Rn. Prove that W⊥ is a subspace of Rn.

1.3. Length Invariance. Let U be an orthogonal matrix. Prove that ||Ux| | = ||x||.

1.4. Angle Invariance. Let Un×n be an orthogonal matrix and x,y ∈ Rn. Prove that Ux ·Uy = x · y.

1.5. Orthogonality Invariance. Let Un×n be an orthogonal matrix and x,y ∈ Rn. Prove that Ux ·Uy = 0 if and only if x · y = 0.

• See problem 2 from Summer 2009 homework 8.

2. Orthogonal Projections
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2.1. Products of Rectangular Orthogonal Matrices. Let U= [u1 u2]. Compute UtU and UUt.

2.2. Projections. Let W = span{u1,u2}. Compute projw y and (UUt)y.

2.3. Vector Decomposition. Write y as the sum of a vector ŷ in W and a vector z in W⊥.

2.4. Geometric Consequences. Describe the geometric relationship between the plane W in R3 and the vectors ŷ and z from part 2.3.

• See problem 3 from summer 2009 homework 8.

3. QR Factorization

Given,
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3.1. QR Me One. Determine the QR factorization of A1.

3.2. Linear Independence. Show that the columns of A2 are linearly independent.

• For the previous two see problem 4 from homework 8 summer 2009.

3.3. QR Me Two. Determine the QR factorization of A2.
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3.4. Least-squares. Using this factorization calculate the unique least-squares solution x̂ = R−1Qtb.1

• See problem 3 from homework 9, summer 2009.

4. Least-Squares

Recall the interpolation problem from an earlier homework:

Suppose you have a set S of three points in R2,

S1 = {(1, 12), (2, 15), (3, 16)}

S2 = {(1, 12), (1, 15), (3, 16)}

S3 = {(1, 12), (2, 15), (2, 15)}

which you seek to interpolate with the quadratic polynomial p(t) = a0 + a1t + a2t
2.

4.1. Least-Squares Approximation. Find the least-squares solution for S3 which we previously found to have no solution.

4.2. Least-Squares Geometry. Given the linear system of equations,

x1 + x2 = 2

x1 + x2 = 4

4.2.1. Least-Squares. Determine the least-squares solution to the linear system.

4.2.2. Least-Squares Error. Determine the least-squares error associated with the linear system.

4.2.3. Graphical Interpretation. Graph the linear system, the least-squares solution, and the least-squares error in R2.

• For this linear problem see problem 2 from homework 9, summer 2009.

5. Singular Value Decomposition

Given,
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5.1. Do it! Find a singular value decomposition of A.

• See problem 5 from homework 9, summer 2009.

6. EXTRA CREDIT - Gram-Schmidt in Function Spaces

In homework 6 we showed that the first four Hermite polynomials were linearly independent and thus a basis for P3.2 While this

makes good use of the material from 4.4 outside of the context of Rn it really misses the point.3 The Hermite polynomials are orthogonal

polynomials and constitute an orthonormal basis for vector space L2(−∞,∞).4 To see why this is true we must define the inner-product

to be,

f · g =

Z ∞
−∞

f(x)g(x)e−x2
dx,(1)

which is different than our standard definition in Rn. 8 We take without proof that this definition satisfies the axioms of an inner-product.

Recall the first few Hermite Polynomials, 9

H0(x) = 1, H1(x) = 2x, H2(x) = −2 + 4x2, H3(x) = −12x + 8x3, x ∈ (−∞,∞),

1See theorem 6.5.15 on page 414.
2We take without proof that the first n+ 1 Hermite polynomials are linearly independent and thus a basis for Pn.
3The Hermite polynomials are prevalent in statistics, applied mathematics and physics but not in the context of polynomial spaces.
4The vector space L2(−∞,∞) is an infinite dimensional complete inner-product space or a Hilbert space, in honor of David Hilbert http://en.

wikipedia.org/wiki/David_Hilbert. The space L2, which is an abstraction of standard Euclidean space, is important because its elements must have

finite length and any infinite-sequence of elements must converge to a point in L2. The condition that ‘vectors’ must have finite length typically implies

that they have finite energy, which is what one would hope. While, the convergence properties allows use to take limits without leaving the space.6

http://en.wikipedia.org/wiki/David_Hilbert
http://en.wikipedia.org/wiki/David_Hilbert
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satisfying the Rodrigues representation,

Hn(x) = (−1)nex2 dn

dxn
e−x2

.(2)

6.1. Symmetric of the Hermite Polynomials. Prove that H2n(x) is and even function and that H2n+1(x) is an odd function. 10

6.2. An Orthogonality Result. Prove that the even Hermite polynomials are orthogonal to the odd Hermite polynomials.

6.3. Gram-Schmidt Part I. Normalize H0 and H1.

6.4. Gram-Schmidt Part II. Using the normalized Hermite polynomials apply Gram-Schmidt and find H2(x). 11

• See problem 5 from homework 8, summer 2009.

6Indeed, things would be very bad if this were not the case. Consider the infinite sum,
P∞

n=0
4(−1)n

2n+1
. The summands are all rational but this sum

converges to π, which is irrational. That is, the rationals are not closed under limits of arbitrary linear combinations!7

7Yeah, I footnoted a footnote. What of it?!
8If we used the standard inner-product and made the Hermite polynomials an orthonormal basis, via GramSchmidt, for Pn then we would have

gotten to the standard polynomial basis, which is nothing new.
9For more we can look at http://en.wikipedia.org/wiki/Hermite_polynomials. There are, in general, infinitely-many of them arising as eigen-

functions of the differential operator
d2

dx2
− x

d

dx
.

10Recall that an even function has the property that f(−x) = f(x) and an odd function has the property that f(−x) = −f(x). To make this clear

from Rodrigues representation you should show that the derivative of an even function is an odd function and that the derivative of an odd function is

an even function.
11MIT’s open courseware site has a nice discussion of GS applied to the Legendre polynomials. web.mit.edu/18.06/www/Spring09/legendre.pdf

To do this first consider a general quadratic, H2(x) = ax2 + bx+ c, and argue that b = 0. Next, we want to find a and c such that H2(x) is orthogonal

to H1(x) and H0(x). Gram-Schmidt gives us a formula for this, page 404 of the text, only every inner-product must be thought of in the sense of (1).

After this calculation you should have a relation between a and c. To find ‘a’ normalize H2(x) and compare your result to H2(x) as it is given. They

should look the same up a multiplicative constant.

http://en.wikipedia.org/wiki/Hermite_polynomials
web.mit.edu/18.06/www/Spring09/legendre.pdf
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