
Linear Systems

John A. Scales

Samizdat
Press



1

Linear Systems

John A. Scales

Colorado School of Mines
jscales@mines.edu

Samizdat Press Golden · White River Junction



2

Published by the Samizdat Press

Center for Wave Phenomena
Department of Geophysics
Colorado School of Mines
Golden, Colorado 80401

and
New England Research

76 Olcott Drive
White River Junction, Vermont 05001

c©Samizdat Press, 2001

Release 4, April 1, 2001

Samizdat Press publications are available via FTP
from http://samizdat.mines.edu

Permission is given to freely copy these documents.



Contents

1 Simple Harmonic Motion: From Springs to Waves 1

1.1 A Spring and a Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Simple harmonic oscillation . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Forced motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Complex numbers and constant coefficient differential equations . 10

1.1.4 Forced motion with damping . . . . . . . . . . . . . . . . . . . . . 12

1.1.5 Damped transient motion . . . . . . . . . . . . . . . . . . . . . . 16

1.1.6 Another velocity-dependent force: the Zeeman effect . . . . . . . 16

1.2 Two Coupled Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 A Matrix Appears . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Matrices for two degrees of freedom . . . . . . . . . . . . . . . . . 23

1.2.3 The energy method . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.4 Matrix form of the coupled spring/mass system . . . . . . . . . . 25

1.3 More on coupled spring/mass lattices . . . . . . . . . . . . . . . . . . . . 31

2 Waves and Modes in One and Two Spatial Dimensions 37

2.1 1-D Separation of Variables: Summary of the Argument . . . . . . . . . . 38

2.2 2-D separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

i



ii CONTENTS

2.4 Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Pictures of Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Spherical and Cylindrical Harmonics . . . . . . . . . . . . . . . . . . . . 47

2.6.1 separation of variables . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.2 Properties of Spherical Harmonics and Legendre Polynomials . . . 54

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 More on vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 A Little More Linear Algebra 71

3.1 Linear Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Some Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Matrix and Vector Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Projecting Vectors Onto Other Vectors . . . . . . . . . . . . . . . . . . . 78

3.6 Linear Dependence and Independence . . . . . . . . . . . . . . . . . . . . 80

3.7 The Four Fundamental Spaces . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7.1 Spaces associated with a linear system Ax = y . . . . . . . . . . . 81

3.7.2 A Geometrical Picture . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8 Matrix Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.9 Elementary operations and Gaussian Elimination . . . . . . . . . . . . . 85

3.9.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.10 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.10.1 Examples of Least Squares . . . . . . . . . . . . . . . . . . . . . . 91

3.11 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12 Orthogonal decomposition of rectangular matrices . . . . . . . . . . . . . 96

3.13 Eigenvectors and Orthogonal Projections . . . . . . . . . . . . . . . . . . 98



CONTENTS iii

3.14 A few examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Fourier Analysis 105

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 The Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Superposition and orthogonal projection . . . . . . . . . . . . . . . . . . 111

4.4 The Fourier Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.2 Some Basic Theorems for the Fourier Transform . . . . . . . . . . 117

4.5 The Sampling Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5.1 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 The Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 122

4.7 The Linear Algebra of the DFT . . . . . . . . . . . . . . . . . . . . . . . 123

4.8 The DFT from the Fourier Integral . . . . . . . . . . . . . . . . . . . . . 124

4.8.1 Discrete Fourier Transform Examples . . . . . . . . . . . . . . . . 126

4.9 Convergence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.10 Basic Properties of Delta Functions . . . . . . . . . . . . . . . . . . . . . 130

5 Linear Systems 133



iv CONTENTS



List of Figures

1.1 A pendulum. The restoring force is the component of the gravitational
force acting perpendicular to the wire supporting the mass. This is−mg sin(θ).
Assuming the wire support is rigid, the acceleration of the mass is in
the θ direction, so ma = m`θ̈ and we have from Newton’s second law:
θ̈ + g

`
sin(θ) = 0. This is a nonlinear equation except for small θ, in which

case sin(θ) ≈ θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A linear spring satisfies Hooke’s law: the force applied by the spring to a
mass is proportional to the displacement of the mass from its equilibrium,
with the proportionality being the spring constant. Since the spring wants
to return to its equilibrium, the force must have the opposite sign as the
displacement. Thus mass times acceleration mẍ = −kx. . . . . . . . . . . 4
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Chapter 1

Simple Harmonic Motion: From
Springs to Waves

You will remember from your elementary physics courses1 that if you want to know the
electric field produced by a collection of point charges, you can figure this out by adding
the field produced by each charge individually. That is, if we have n charges {qi}i=1,n,
then the total electric field is (neglecting constant factors)

E(q1 + q2 + · · · qn) =
n∑

i=1

qi
(r− ri)

|r− ri|3
(1.0.1)

where r is the observation point and ri is the position vector of the ith charge. The ith
term in the sum on the right hand side,

E(qi) = qi
(r− ri)

|r− ri|3
, (1.0.2)

is the electric field of the ith point charge (Coulomb’s law). This property, whereby we
can analyze a complicated system (in this case the total electric field E(q1+q2+· · · qn)) by
breaking it into its constituent pieces (in this case E(qi)) and then adding up the results
is known as linearity. There are three reasons why linear systems are so important.

1. We can solve them. There are systematic mathematical techniques that let us
tackle linear problems.

2. Lots of physics is linear. Maxwell’s equations of electricity and magnetism for
instance, or the elastic and acoustic wave equations.

3. Lots of physics that is nonlinear is approximately linear at low energies or for small
displacements from equilibrium.

1
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θ

m
Figure 1.1: A pendulum. The restoring force is the component of the gravitational force
acting perpendicular to the wire supporting the mass. This is −mg sin(θ). Assuming the
wire support is rigid, the acceleration of the mass is in the θ direction, so ma = m`θ̈ and
we have from Newton’s second law: θ̈+ g

`
sin(θ) = 0. This is a nonlinear equation except

for small θ, in which case sin(θ) ≈ θ.

Here we introduce a nice, simplifying notation for derivatives of functions of time

df(t)

dt
= ḟ(t) = ḟ

d2f(t)

dt2
= f̈(t) = f̈ .

(1.0.3)

For functions of some other variable we write

dh(x)

dx
= h′(x) = h′

d2h(x)

dx2
= h′′(x) = h′′.

(1.0.4)

For instance, the motion of a plane pendulum of length ` (Figure 1.1) is governed by

θ̈ +
g

`
sin(θ) = 0. (1.0.5)

Equation 1.0.5 is not linear in θ. To solve it exactly we have to resort to elliptic functions
or numerical methods. However, for small displacements (θ << 1), sin(θ) is approxi-

1My treatment of elementary simple harmonic motion is standard in most introductory physics text-
books. My favorite is Feynman’s Lectures on Physics [3].
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mately equal to θ. So for small displacements, the equation for the pendulum is

θ̈ +
g

`
θ = 0. (1.0.6)

Think of this equation as being the result of an operator acting on θ. Let’s call the
operator L, in which case Equation 1.0.6 becomes L(θ) = 0. Why bother? Now we can
see that

L(θ1 + θ2) =
d2(θ1 + θ2)

dt2
+
g

`
(θ1 + θ2)

=

(
d2θ1

dt2
+
g

`
θ1

)
+

(
d2θ2

dt2
+
g

`
θ2

)

= L(θ1) + L(θ2). (1.0.7)

A formal definition of a linear operator L, acting on numbers or vectors x and y is that

L(ax + by) = aL(x) + aL(y) (1.0.8)

for any a and b. Thus the equation of motion for the pendulum is linear in θ when θ is
small.

This is not an unusual situation. Suppose we have a point mass m constrained to move
along the x-axis under the influence of some force F . Then Newton’s second law is
mẍ = F (x). Suppose x0 is an equilibrium point of the system, so F (x0) = 0. Then
expanding F in a Taylor series about x0 we have

mẍ = F ′(x0)(x− x0) +
1

2
F ′′(x0)(x− x0)2 + · · · (1.0.9)

If x is close to x0, then x − x0 is small and we can drop all the terms past the first.2

If we do drop the higher order terms, Equation 1.0.9 becomes linear in x − x0. Since
we said nothing at all about F itself, only that x is close to an equilibrium position,
this argument applies to any F and is therefore one reason that nature appears linear so
much of the time.
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x

k k

Equilibrium

Figure 1.2: A linear spring satisfies Hooke’s law: the force applied by the spring to a mass
is proportional to the displacement of the mass from its equilibrium, with the propor-
tionality being the spring constant. Since the spring wants to return to its equilibrium,
the force must have the opposite sign as the displacement. Thus mass times acceleration
mẍ = −kx.

1.1 A Spring and a Mass

1.1.1 Simple harmonic oscillation

Figure 1.2 shows a mass suspended from a spring. On the left, the mass and spring are in
equilibrium. On the right the system has been displaced a distance x from equilibrium.3

The spring is said to be linear if it satisfies Hooke’s law: the force applied to the mass is
proportional to its displacement from equilibrium.

Robert Hooke (Born: July 1635, Isle of Wight, Died: March 1703 in London) was
an English natural scientist. He first published his law in 1676 as a Latin anagram:
ceiiinosssttuv. Three years later he published the solution: ut tensio sic vis, more or
less “as the force, so the displacement”. Hooke attempted to prove that the Earth
moves in an ellipse round the Sun and conjectured an inverse square law for gravity.
Unfortunately, no portrait of Hooke is known to exist.

The constant of proportionality is called the spring constant and is usually denoted by
k. Since the force wants to restore the mass to its equilibrium, it must have the opposite

2This is an example of a common sort of approximation. Unless x = x0 all the powers appearing
in the Taylor series are potentially nonzero, but their importance decreases with increasing power; the
most important being the lowest or leading order. In this case the leading order term is x − x 0. If
x − x0 is .1 for instance, then by dropping terms beyond the first we are introducing an error of order
.01. Conversely, if we want to achieve an accuracy of a given order, then we can work out how many
terms in the Taylor series are needed to achieve that accuracy.

3In the next section we will take gravity into account.
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sign of the displacement. Thus mass times acceleration mẍ = −kx:

Hooke’s Law mẍ = F = −kx. (1.1.1)

Equation 1.1.1 is a simple example of a linear, constant coefficient, ordinary differential
equation. You learned how to solve this equation by mathematics in your differential
equations class. Here we think about the physics. Since Equation 1.1.1 is supposed to
model the motion of the spring/mass system, let’s see experimentally what that motion
really is. I went to the hardware store and bought a spring of unknown properties and
attached a 375 g mass to the end. Pull the mass down a little bit and let it go. Now
count the number of complete oscillations in, say, 15 seconds. For this spring we get 19
complete oscillations. That’s just under 1.3 oscillations per second, or 1.3 Hz.

Now pull the mass down twice as far and let it go. Count the oscillations. We still
get 19. This is an interesting fact: the frequency of oscillation is independent of
the amplitude of the motion. That means that the solution of Equation 1.1.1 must
be a function that is periodic, with a fixed period of 1/1.3, since every 1/1.3 seconds
the motion repeats. So x(t) = cos(ωt) or x(t) = sin(ωt) where ω = 2π 1.3 radians per
second.4

Hz is Short for Hertz, after the German physicist Heinrich Hertz.
Hertz was born in Hamburg in 1857 and studied at the University
of Berlin. Hertz is best known as the first to broadcast and receive
radio waves: a profoundly influential discovery. Less well known is the
fact that Hertz also discovered the photoelectric effect, while pursuing
his research into radio waves. A modest man, Hertz died at the age

of 37 in 1894 from blood poisoning. His brief career as a professor was spent at the
Universities of Karlsruhe and Bonn.

Since there is no absolute scale of time, we are free to choose the origin of the time axis
however we wish. In this experiment it seems reasonable to choose the point t = 0 to
correspond to the time we let the mass go. That being the case, the solution must be
x(t) = A cos(ωt) since sin(0) = 0. Now x(0) = A so the constant A corresponds to the
amplitude of displacement. If we plug x(t) = A cos(ωt) into Equation 1.1.1, then this
is indeed a solution for any A provided that ω2 = k/m. This makes sense qualitatively,
since increasing the mass should decrease the frequency: the greater mass stretches the
spring more and so takes longer to complete each oscillation. On the other hand, if we
increase k we are making the spring stiffer, so it oscillates faster.

But let’s see if this analysis holds up experimentally. Let’s increase the mass a little
bit by adding a 60 g magnet to it. Count the oscillations again. This time we get only

4Frequencies in Hz are usually denoted by an f . ω is almost universally used for circular frequencies.
Just remember that since the motion repeats itself once every 1/f seconds, the argument of the sine
function must increase by 2π during this time.
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18 oscillations in 15 seconds, or 1.2 Hz. So by increasing the mass by about 16% we’ve
decreased the frequency of oscillation by about 8%. That means the frequency must go
as one over the square root of the mass! Not convinced? We can use a Taylor series to
do a perturbation analysis (using m0 to denote the unperturbed mass):

ω(m) ≈ ω(m0) + ω′(m0)δm

= ω0 −
1

2

√
k

m3
0

δm defining ω0 = ω(m0)

= ω0 −
1

2
ω0
δm

m0
since ω0 =

√
k

m0

= ω0(1− 1

2

δm

m0
)

= 2π 1.3(1− 1

2

60

375
) = 2π 1.3× .92 ≈ 2π 1.2r/s. (1.1.2)

So the theory holds water. NB. The argument of the sinusoid is an angle. Therefore
during one complete oscillation, the angle goes through 2π radians.

No matter how we start the spring/mass system going, it always oscillates with the

frequency
√

k
m

. So this is its natural or characteristic frequency. Let’s continue to
refer to this characteristic frequency as ω0 to emphasize the fact that it is a constant for
a given spring/mass system.

Exercise on spring constants

First compute the spring constant of the spring using the data above. You’ll see that
with or without the added 60 g mass, the spring constant is about 25 N/m. Now
consider the “spring constant” of a diatomic molecule. Look up the mass of a nitrogen
or oxygen molecule, for example. You can assume that the resonant frequency is in
the infrared (why?), which makes it about 1013 Hz. What you will find is that the
spring constant is within a factor of 2 or 3 the same as the spring we used in class!

Spring/mass or spring + mass?

Scenario 1: We suspend the spring without a mass. It has some relaxed length l. Now
attach the mass m. It stretches the spring a little bit ∆l. This stretching is caused by the
weight (gravitational force) of the mass: mg. So mg = k∆l. (Since in equilibrium the
total force is zero: mg + (−k∆l) = 0.) Now pull the mass down a little bit and let it go.
The total displacement from the equilibrium position of the spring alone is ∆l + x. So
the restoring force of the spring is −k(∆l + x). Thus the total force on the mass (spring
+ gravity, but no damping for now) is mg−k(∆l+x). But since mg = k∆l, this reduces
to −kx. Thus, even if we explicitly include gravity and the original relaxed length of
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x

kk
relaxed length

spring/mass equilibrium

Figure 1.3: The relaxed length of the spring with no mass attached (left). Adding the
mass increases the relaxed length but does not change the motion, provided the spring
is linear.

the spring, we end up with mẍ + kx = 0 as the equations of motion. This is shown in
Figure 1.3.

As an aside, the fact that mg = k∆l gives us a connection between g and ω0: g/∆l = ω2
0.

For the spring we used above ∆l was about 9 cm. The frequency is
√

980
9
/2π ≈ 1.7. This

is a bit higher than measured, but our theory is approximate since we’ve neglected the
finite mass of the spring itself.

Scenario 2: We suspend the spring with the mass and take the relaxed position of the
combined spring/mass system as the equilibrium state and measure displacements from
this position. Ignoring gravity, we still get mẍ+ kx = 0. In effect what we’ve done is to
use the mass m to increase the relaxed length of the spring. Since the spring is linear, a
constant change in the equilibrium position has no effect on the motion.

Sine or Cosine?

At first glance it seems odd that something as arbitrary as the choice of the origin of time
could influence our solution. Once the mass is oscillating we could just as easily suppose
that the time at which it passes through the origin is t = 0. But then the “initial”
displacement would be zero (since the mass is at the origin), while the initial velocity
would be non-zero. That would make the displacement proportional to a sine function,
say x(t) = B sin(ω0t). Then x(0) = 0 and ẋ(0) = ω0B. So B must equal whatever
velocity the mass has when it zips through the origin, divided by the characteristic
frequency ω0. So it looks like we can have either

x(t) = x(0) cos(ω0t), (1.1.3)

taking t = 0 as the time at which we let the mass go, or

x(t) =
ẋ(0)

ω0
sin(ω0t), (1.1.4)
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taking t = 0 as the time at which the spring passes through the origin with velocity ẋ(0).

Mathematically this amounts to saying that we must specify both x(0) and ẋ(0) since
the equations of motion are second order. Physically this amounts to noticing that the
motion is the same no matter how we choose the origin of time. We can cover all the
bases by writing the displacement as

x(t) = A cos(ω0(t+ t0)) = A cos(ω0t+ ∆) (1.1.5)

where t0 is an arbitrary time shift. It’s a little cleaner if we absorb the product of ω0 and
t0 as a single, dimensionless phase constant ∆. Using the law of addition of cosines, this
last expression can be written

x(t) = A cos(ω0t+ ∆) = A cos(ω0t) cos(∆)− A sin(ω0t) sin(∆)

= a cos(ω0t) + b sin(ω0t), (1.1.6)

where a = A cos(∆) and b = −A sin(∆). No matter how we write it, we must specify two
constants: x(0), ẋ(0); A, t0; A,∆; a, b.

Energy is conserved

So far we have not accounted for the damping of the spring. Theoretically, once started
in motion it should oscillate at ω0 Hz forever. Later we will take into account the
actual dissipation of energy in the spring, but for now as a check we should verify that
the solution we have obtained really does conserve energy. The total energy of the
spring/mass system is a combination of the kinetic energy of the mass 1/2mẋ2 and the
potential energy of the spring. The force −kx is minus the derivative of 1/2kx2, so this
must be the potential energy. It is generally true that if energy is conserved, the force is
minus the gradient (d/dx in the one-dimensional case) of a potential energy function.

OK, so the total energy of the spring/mass system is the sum of the kinetic and potential
energies:

E = T + U =
1

2
mẋ2 +

1

2
kx2. (1.1.7)

Using the general solution x(t) = A cos(ω0t + ∆) we have

E =
1

2
mω2

0A
2 sin2(ω0t + ∆) +

1

2
kA2 cos2(ω0t + ∆)

=
1

2
kA2 sin2(ω0t + ∆) +

1

2
kA2 cos2(ω0t + ∆)

= kA2. (1.1.8)

Since the t disappears, we see that the energy is constant with time, and thus energy is
conserved. The reasoning is somewhat circular however, since we can’t really take the
force to be the gradient of a potential unless energy is conserved.
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1.1.2 Forced motion

When the mass shown in Figure 1.2 is bouncing up and down, we can tap it gently
from below. Notice that if you tap it at just the natural frequency ω0, your taps are
synchronized with the motion, so the energy you apply goes directly into increasing the
amplitude of the oscillation. The same thing happens when you’re swinging in a swing.
If you swing your legs back and forth with the natural frequency of the swing, you’ll get
a big amplification of your motion. This is called a resonance. To model it we need to
add another term to the equation of motion of the spring/mass.

mẍ(t) + kx(t) = F (t). (1.1.9)

Because the motion of the mass is oscillatory, the easiest sorts of forces to deal with
will be oscillatory too. Later we will see that it is no loss to treat sinusoidal forces; the
linearity of the equations will let us build up the result for arbitrary forces by adding a
bunch of sinusoids together. But for now, let’s just suppose that the applied force has
the same form as the unforced motion of the mass:

mẍ(t) + kx(t) = F0 cos(ωt). (1.1.10)

The forcing function doesn’t know anything about the natural frequency of the system
and there is no reason why the forced oscillation of the mass will occur at ω0. Of course,
we will be especially interested in the solution when ω = ω0. To keep the algebra simple,
let’s take the phase ∆ equal to zero and look for solutions of the form

x(t) = A cos(ωt). (1.1.11)

Plugging this into Equation 1.1.10 we have

(−ω2 + ω2
0)A cos(ωt) =

F0

m
cos(ωt). (1.1.12)

The cosines cancel and we are left with an equation for the amplitude of motion:

A =
F0

m

1

ω2
0 − ω2

. (1.1.13)

Notice especially what happens if we force the system at the natural frequency: ω = ω0

and the amplitude blows up. In practice the amplitude never becomes infinite. In the
first place the spring would stretch to the point of breaking; but also, dissipation, which
we have neglected, would come into play. Nevertheless, the idea is sound. If we apply a
force to a system at its characteristic frequency we should expect a big effect.

Forced and free oscillations

The motion of the mass with no applied force is an example of a free oscillation. Other-
wise the oscillations are forced. An important example of a free oscillation is the motion
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of the entire earth after a great earthquake. Free oscillations are also called transients
since for any real system in the absence of a forcing term, the damping will cause the
motion to die out

1.1.3 Complex numbers and constant coefficient differential

equations

We solved the equations of the simple spring/mass system ẍ(t) + ω2
0x = 0 by thinking

about the physics. This is an example of a constant coefficient differential equation.
The coefficients are the terms multiplying the derivatives of the independent variable.
(x is the zeroth derivative of x.) The most general linear nth order constant coefficient
differential equation is

an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·a1

dx

dt
+ a0x = 0. (1.1.14)

These constant coefficient differential equations have a very special property: they reduce
to polynomials for exponential x. To see this, plug an exponential ept into Equation 1.1.14.
The ith derivative with respect to time is piept, so Equation 1.1.14 becomes

(
anp

n + an−1p
n−1 + · · ·+ a1p+ a0

)
ept = 0. (1.1.15)

Canceling the overall factor of ept we see that solving Equation 1.1.14 reduces to finding
the roots of an nth order polynomial. For n = 2, we know the formula for the roots

p =
−a1 ±

√
a2

1 − 4a0a2

2a2

. (1.1.16)

When n is greater than 2 life becomes more complicated; fortunately most equations in
physics are first or second order.

For example, suppose

ẍ + x = 0, (1.1.17)

so a2 = 1, a1 = 0, and a0 = 1. Then p = ±
√
−1.

√
−1 = i is called the pure imaginary

number. Here we see the main reason for complex numbers. Without i, not even a simple
equation such as ẍ+x = 0 has a solution. With i every algebraic equation can be solved.

Complex numbers are things of the form a+ib where a and b are real numbers. We can
think of 1 and i as being basis vectors in a two-dimensional Cartesian space. Addition of
complex numbers is component-wise: (a+ib)+(p+iq) = (a+p)+i(b+q). Multiplication
is as you would expect, but with ii = −1. So (a + ib)(p + iq) = (ab − bq) + i(bp + aq).
In the complex plane, multiplication by i acts as a rotation by π/4. i1 = i, ii = −1,
i(−1) = −i and i(−i) = 1. (Figure 1.4.)



1.1. A SPRING AND A MASS 11

1 i = i*1

-1 = i*i -i = i*(-1)

Figure 1.4: Multiplication by the pure imaginary i acts as a π/4 rotation in the complex
plane.

And just as there is an equivalence between Cartesian and polar coordinates, so we can
give a “polar” representation of every complex number. To understand this connection,
consider the Maclauren series for ex

ex = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720
+ · · · (1.1.18)

Now replace x with ix. We get

eix = 1 + ix +
(ix)2

2
+

(ix)3

6
+

(ix)4

24
+

(ix)5

120
+

(ix)6

720
+ · · ·

=

[
1− x2

2
+
x4

24
+ · · ·

]
+ i

[
x− x3

6
+

x5

120
+ · · ·

]
(1.1.19)

In the limit of small x, this reduces to eix ≈ 1 + ix, which is the small angle limit of
cos(x) + i sin(x). To see if this extends to large x, compute the Maclauren series for the
sine and cosine:

cos(x) = 1− x2

2
+
x4

24
+ · · · (1.1.20)

sin(x) = x− x3

6
+

x5

120
+ · · · . (1.1.21)

Thus we have proved what some call the most remarkable formula in mathematics:

Euler’s Formula eix = cos(x) + i sin(x). (1.1.22)

The geometry of the Cartesian and polar representations is summarized in Figure 1.5.
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imaginary axis

real axis

z

r

θ
x

y

Figure 1.5: Every complex number z can be represented as a point in the complex plain.
There are various ways or “coordinates” by which we can parameterize these points.
The Cartesian parameterization is in terms of the real and imaginary parts. The polar
parameterization is in terms of the length (or modulus) and angle (or phase). The
connection between these two forms is the remarkable Euler formula: reiθ = r cos θ +
ir sin θ. From Pythagoras’ theorem we can see r2 = x2 + y2 and the angle θ is just the
arctangent of y/x.

1.1.4 Forced motion with damping

Now let’s go ahead and do the fully general simple harmonic oscillator, including the
effects of damping (i.e., dissipations). The causes of damping are extremely subtle. We
will not go deeply into these effects here except to say that ultimately the physical pro-
cesses which cause damping give rise to motion at the atomic and molecular level. If you
calculate the characteristic frequencies of atoms, as we have done for the spring/mass
system, you see that these frequencies are the same as electromagnetic radiation in the
infrared. Heat in other words! But this heat is just the manifestation of a kind of oscilla-
tory motion. When the energy of these oscillations is not too great, the atoms/molecules
can be treated as simple harmonic oscillators.

However, it has long been observed empirically that to a reasonable approximation, the
effect of damping or friction is to oppose the motion of the mass with a force that is
proportional to the velocity. If the mass is at rest, there is no friction. As the velocity
increases, the frictional force increases and this force opposes the motion. Try extending
a damping piston of the sort used on doors. The faster you extend the piston, the greater
the resistance. So as a first approximation, we can model the friction of our spring/mass
system as

ẍ+ γẋ + ω2
0x =

F

m
(1.1.23)

where γ is a constant reflecting the strength of the damping. We can proceed just as
before with the undamped, forced oscillations but the algebra is greatly simplified if we
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use complex numbers. We have used cos(ωt) to represent a oscillatory driving force.
From Euler’s formula we know that the cosine is the real part of eiωt. So we are going to
use a trick. We are going to use eiωt throughout the calculation and then take the real
part when we’re done. The reason for doing this is simply that exponentials are easier
to work with than cosines. The fact that we get the right answer in the end depends
critically on the equations being linear. This trick will not work for nonlinear equations.
To prove this to yourself, assume for the moment that x = xr + ixi and F = Fr + iFi.
Plug these into Equation 1.1.23 and show that

ẍr + γẋr + ω2
0xr + i

[
ẍi + γẋi + ω2

0xi
]

=
Fr
m

+ i
Fi
m
. (1.1.24)

In order for two complex numbers to be equal, their real and imaginary parts must be
equal separately. Therefore the real part of the complex “displacement” must satisfy
Equation 1.1.23, which is what was claimed.

So let’s write the complex force as F = F̂ eiωt and the complex displacement as x = x̂eiωt.
Plugging this into Equation 1.1.23 implies that

(−ω2 + iγω + ω2
0)x̂eiωt =

F̂

m
eiωt. (1.1.25)

Canceling the exponential gives

x̂ =
F̂ /m

−ω2 + iγω + ω2
0

. (1.1.26)

This equation requires a little analysis, but straight off we can see that the presence of
the damping term γ has fixed the infinity we saw when we forced the oscillator at its
resonant frequency; even when ω = ω0 the amplitude is finite provided γ is not zero. For
the moment let’s just look at the denominator of the displacement.

−ω2 + iγω + ω2
0 =

√
(ω2

0 − ω2)2 + γ2ω2e
i tan−1 γω

ω2
0
−ω2

. (1.1.27)

The function ρ2 = 1/((ω2
0 − ω2)2 + γ2ω2) has a characteristic shape seen in all resonance

phenomena. It’s peaked about the characteristic frequency ω0 and has a full width of γ
at half its maximum height as illustrated in Figure 1.6.

Finally, since γ has the dimension of inverse time, a useful dimensionless measure of
damping can be obtained by taking the ratio of the characteristic frequency ω0 and
γ. This ratio is called the Q (for quality factor) of the peak. Typical values of Q at
ultrasonic frequencies can range from 10-100 for sedimentary rocks, to a few thousand
for aluminum, to nearly a million for monocrystalline quartz.
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ρ

ωω 0

γ

Figure 1.6: Square of the amplitude factor ρ2 = 1/((ω2
0−ω2)2 +γ2ω2) for forced, damped

motion near a resonance ω0. The full width at half max of this curve is the damping
factor γ, provided γ is small!
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Figure 1.7: The arctangent function asymptotes at ±π/2, so we should expect to see a
phase shift of π when going through a resonance.
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Figure 1.8: Here is a resonance spectrum for a piece of aluminum about the size shown in
Figure 1.9. A swept sine wave is fed into the sample via a tiny transducer and recorded
on another transducer. At a resonant frequency, there is a big jump in the amplitude.
The DC level is shifted upward to make it easy to see the peaks. The inset shows a
blow-up of one peak.

Figure 1.9: Resonance ultrasonic spectroscopy setup. The rock is held fast by two tiny
transducers (“pinducers”) which are used to transmit a signal and record the response.
The two traces shown on the oscilloscope correspond to the transmitted and received
signal. As the frequency is varied we see the characteristic resonance (cf Figure 1.8). To
a first approximation, the frequency associated with the peak is one of the characteristic
(eigen) frequencies of the sample.
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1.1.5 Damped transient motion

Suppose we suspend our mass in a viscous fluid. Pull it down and let it go. The fluid will
damp out the motion, more or less depending on whether it has the viscosity of water or
honey. Mathematically this case is easy, all we have to do is set the right hand side of
Equation 1.1.25 to zero. This leaves a simple quadratic for ω

ω2 − iγω − ω2
0 = 0 (1.1.28)

which has the two solutions

ω =
iγ ±

√
4ω2

0 − γ2

2

= i
γ

2
± ω0

√
1−

(
γ

2ω0

)2

. (1.1.29)

These give the following solutions for the motion (using x(0) = x0)

x(t) = x0e
− γ

2
te
±itω0

√
1−
(

γ
2ω0

)2

. (1.1.30)

This looks like the equation of a damped sinusoid. But the second term may or may not
be a sinusoid, depending on whether the square root is positive. So we have to treat two
special cases. First if γ

2ω0
< 1, corresponding to small damping, then the argument of

the square root is positive and indeed we have a damped sinusoid. On the other hand if
γ

2ω0
> 1, then we can rewrite the solution as

x(t) = x0e
− γ

2
te
±tω0

√
( γ

2ω0
)2−1

(1.1.31)

where, once again, we have arranged things so that the argument of the square root is
positive. But now only the minus sign in the exponent makes sense, since otherwise the
amplitude of the motion would increase with time. So, we have

x(t) = x0e
− γ

2
te
−ω0t

√
( γ

2ω0
)2−1

. (1.1.32)

In this case the motion is said to be “over-damped” since there is no oscillation. In a
highly viscous fluid (high relative to ω0) there is no oscillation at all, the motion is quickly
damped to zero. The borderline case γ = 2ω0 is called critical damping, in which case
x(t) = x0e

− γ
2
t.

1.1.6 Another velocity-dependent force: the Zeeman effect

As a classical model for the radiation of light from excited atoms we can consider the
electrons executing simple harmonic oscillations about their equilibrium positions under
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the influence of a restoring force F = −kr. Thus our picture is of an oscillating electric
dipole. Remember, the restoring force −kr is just a linear approximation to the Coulomb
force and therefore k, the “spring constant”, is the first derivative of the Coulomb force
evaluated at the equilibrium radius of the electron. So the vector differential equation
governing this simple harmonic motion is:

mr̈ + kr = 0. (1.1.33)

Notice that there is no coupling between the different components of r. In other words
this one vector equation is equivalent to three completely separate scalar equations (using
ω2

0 = k/m)

ẍ + ω2
0x = 0

ÿ + ω2
0y = 0

z̈ + ω2
0z = 0

each of which has the same solution, a sinusoidal oscillation at frequency ω0. Think of
it this way: there are three equations and three frequencies of oscillation, but all the
frequencies happen to be equal. This is called degeneracy. The equations are uncoupled
in the sense that each unknown (x, y, z) occurs in only one equation; thus we can solve
for x ignoring y and z.

Now let’s suppose we apply a force that is not spherically symmetric. For instance,
suppose we put the gas of atoms in a magnetic field pointed along, say, the z-axis. This
results in another force on the electrons of the form qṙ×Bẑ (from Lorentz’s force law).
Adding this force to the harmonic (−kr) force gives5

ẍ + ω2
0x−

qB

m
ẏ = 0

ÿ + ω2
0y +

qB

m
ẋ = 0

z̈ + ω2
0z = 0.

The z equation hasn’t changed so it’s still true that z(t) = Real(z0e
iω0t). But now the x

and y equations are coupled–we must solve for x and y simultaneously. Let us assume a
solution of the form:

x(t) = Real(x0e
iωt)

y(t) = Real(y0e
iωt)

5Remember the right-hand screw rule, so ŷ × ẑ = x̂, x̂× ẑ = −ŷ, and ẑ× ẑ = 0
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where x0 and y0 are constants to be determined. Plugging these into the equations for x
and y gives the two amplitude equations

(ω2
0 − ω2)x0 =

qB

m
iωy0 (1.1.34)

(ω2
0 − ω2)y0 = −qB

m
iωx0.

We can use the first equation to compute x0 in terms of y0 and then plug this into the
second equation to get

(ω2
0 − ω2)y0 = −

(
qB
m
iω
)2

ω2
0 − ω2

y0.

Now we eliminate the y0 altogether and get

(
ω2

0 − ω2
)2

=
(
qB

m
ω
)2

(1.1.35)

Taking the square root we have

ω2
0 − ω2 = ±qB

m
ω. (1.1.36)

This is a quadratic equation for the unknown frequency of motion ω. So we have

ω =
± qB

m
±
√(

qB
m

)2
+ 4ω2

0

2
. (1.1.37)

This is not too bad, but we can make a great simplification by assuming that the magnetic
field is weak. Specifically, let’s assume that qB

m
<< ω0 so the square root reduces to 2ω0.

We take the positive square root since otherwise we would have negative frequencies.
Thus

ω = ω0 ±
qB

2m
. (1.1.38)

As a result of the applied magnetic field, there are now three characteristic frequencies
of oscillation:

ω1 = ω0 +
qB

2m
ω2 = ω0

ω3 = ω0 −
qB

2m
.
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k1 k2 k3

m1 m2

Figure 1.10: Two masses coupled by a spring and attached to walls.

This splitting of the degenerate frequency by an external magnetic
field is called the Zeeman effect, after its discoverer Pieter Zeeman
was born in May 1865, at Zonnemaire, a small village in the isle of
Schouwen, Zeeland, The Netherlands. Zeeman was a student of the
great physicists Onnes and Lorentz in Leyden. He was awarded the
Nobel Prize in Physics in 1902. Zeeman succeeded Van der Waals

(another Nobel prize winner) as professor and director of the Physics Laboratory in
Amsterdam in 1908. In 1923 a new laboratory was built for Zeeman that included a
quarter-million kilogram block of concrete for vibration free measurements.

We could continue the analysis by plugging these frequencies back into the amplitude
equations 1.1.35. As an exercise, do this and show that the motion of the electron
(and hence the electric field) is circularly polarized in the direction perpendicular to the
magnetic field.

1.2 Two Coupled Masses

With only one mass and one spring, the range of motion is somewhat limited. There is
only one characteristic frequency ω2

0 = k
m

so in the absence of damping, the transient
(unforced) motions are all of the form cos(ω0t + ∆).

Now let us consider a slightly more general kind of oscillatory motion. Figure 1.10 shows
two masses (m1 and m2) connected to fixed walls with springs k1 and k3 and connected
to one another by a spring k2. To derive the equations of motion, let’s focus attention
on one mass at a time. We know that for any given mass, say mi (whose displacement
from equilibrium we label xi) it must be that

miẍi = Fi (1.2.1)

where Fi is the total force acting on the ith mass. No matter how many springs and
masses we have in the system, the force applied to a given mass must be transmitted
by the two springs it is connected to. And the force each of these springs transmits is
governed by the extent to which the spring is compressed or extended.
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Referring to Figure 1.10, spring 1 can only be compressed or extended if mass 1 is
displaced from its equilibrium. Therefore the force applied to m1 from k1 must be −k1x1,
just as before. Now, spring 2 is compressed or stretched depending on whether x1 − x2

is positive or not. For instance, suppose both masses are displaced to the right (positive
xi) with mass 1 being displaced more than mass 2. Then spring 2 is compressed relative
to its equilibrium length and the force on mass 1 will in the negative x direction so as to
restore the mass to its equilibrium position. Similarly, suppose both masses are displaced
to the right, but now with mass 2 displaced more than mass 1, corresponding to spring 2
being stretched. This should result in a force on mass 1 in the positive x direction since
the mass is being pulled away from its equilibrium position. So the proper expression of
Hooke’s law in any case is

m1ẍ1 = −k1x1 − k2(x1 − x2). (1.2.2)

And similarly for mass 2
m2ẍ2 = −k3x2 − k2(x2 − x1). (1.2.3)

These are the general equations of motion for a two mass/three spring system. Let us
simplify the calculations by assuming that both masses and all three springs are the
same. Then we have

ẍ1 = − k
m
x1 −

k

m
(x1 − x2)

= −ω2
0x1 − ω2

0(x1 − x2)

= −2ω2
0x1 + ω2

0x2. (1.2.4)

and

ẍ2 = − k
m
x2 −

k

m
(x2 − x1)

= −ω2
0x2 − ω2

0(x2 − x1)

= −2ω2
0x2 + ω2

0x1. (1.2.5)

Assuming trial solutions of the form

x1 = Aeiωt (1.2.6)

x2 = Beiωt (1.2.7)

we see that

(−ω2 + 2ω2
0)A = ω2

0B (1.2.8)

(−ω2 + 2ω2
0)B = ω2

0A. (1.2.9)

Substituting one into the other we get

A =
ω2

0

2ω2
0 − ω2

B, (1.2.10)
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and therefore

(2ω2
0 − ω2)B =

ω4
0

2ω2
0 − ω2

B. (1.2.11)

This gives an equation for ω2

(2ω2
0 − ω2)2 = ω4

0. (1.2.12)

There are two solutions of this equation, corresponding to ±ω2
0 when we take the square

root. If we choose the plus sign, then

2ω2
0 − ω2 = ω2

0 ⇒ ω2 = ω2
0. (1.2.13)

On the other hand, if we choose the minus sign, then

2ω2
0 − ω2 = −ω2

0 ⇒ ω2 = 3ω2
0. (1.2.14)

We have discovered an important fact: spring systems with two masses have two char-
acteristic frequencies. We will refer to the frequency ω2 = 3ω2

0 as “fast” and ω2 = ω2
0

as “slow”. Of course these are relative terms. Now that we have the frequencies we can
investigate the amplitude. First, since

A =
ω2

0

2ω2
0 − ω2

B, (1.2.15)

we have for the slow mode (ω = ω0)

A = B, (1.2.16)

which corresponds to the two masses moving in phase with the same amplitude. On the
other hand, for the fast mode

A = −B. (1.2.17)

For this mode, the amplitudes of the two mass’ oscillation are the same, but they are
out of phase. These two motions are easy to picture. The slow mode corresponds to
both masses moving together, back and forth, as in Figure 1.11 (bottom). The fast mode
corresponds to the two masses oscillating out of phase as in Figure 1.11 (top).

1.2.1 A Matrix Appears

There is a nice way to simplify the notation of the previous section and to introduce a
powerful mathematical at the same time. Let’s put the two displacements together into a
vector. Define a vector u with two components, the displacements of the first and second
mass:

u =

[
Aeiωt

Beiωt

]
= eiωt

[
A
B

]
. (1.2.18)
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Figure 1.11: With two coupled masses there are two characteristic frequencies, one “slow”
(bottom) and one “fast” (top).

We’ve already seen that we can multiply any solution by a constant and still get a
solution, so we might as well take A and B to be equal to 1. So for the slow mode we
have

u = eiω0t

[
1
1

]
, (1.2.19)

while for the fast mode we have

u = ei
√

3ω0t

[
1
−1

]
. (1.2.20)

Notice that the amplitude part of the two modes

[
1
1

]
and

[
1
−1

]
(1.2.21)

are orthogonal. That means that the dot product of the two vectors is zero: 1 × 1 +
1 × (−1) = 0.6 As we will see in our discussion of linear algebra, this means that the
two vectors point at right angles to one another. This orthogonality is an absolutely
fundamental property of the natural modes of vibration of linear mechanical systems.

6 [
1
1

]
·
[

1
−1

]
≡ [1, 1]

[
1
−1

]
= 1 · 1− 1 · 1 = 0.
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1.2.2 Matrices for two degrees of freedom

The equations of motion are (see Figure 1.10):

m1ẍ1 + k1x1 + k2(x1 − x2) = 0 (1.2.22)

m2ẍ2 + k3x2 + k2(x2 − x1) = 0. (1.2.23)

We can write these in matrix form as follows.
[
m1 0
0 m2

] [
ẍ1

ẍ2

]
+

[
k1 + k2 −k2

−k2 k2 + k3

] [
x1

x2

]
=

[
0
0

]
. (1.2.24)

Or, defining a mass matrix

M =

[
m1 0
0 m2

]
(1.2.25)

and a “stiffness” matrix

K =

[
k1 + k2 −k2

−k2 k2 + k3

]
(1.2.26)

we can write the matrix equation as

M ü +Ku = 0 (1.2.27)

where

u ≡
[
x1

x2

]
. (1.2.28)

This is much cleaner than writing out all the components and has the additional advan-
tage that we can add more masses/springs without changing the equations, we just have
to incorporate the additional terms into the definition of M and K.

Notice that the mass matrix is always invertible since it’s diagonal and all the masses
are presumably nonzero. Therefore

M−1 =

[
m1
−1 0

0 m2
−1

]
. (1.2.29)

So we can also write the equations of motion as

ü +M−1Ku = 0. (1.2.30)

And it is easy to see that

M−1K =

[
k1+k2

m1

−k2

m1−k2

m2

k2+k3

m2

]
.
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As another example, let’s suppose that all the masses are the same and that k1 = k3 = k.

Letting ω0 =
√
k/m as usual and defining Ω =

√
k2/m, we have the following beautiful

form for the matrix M−1K:

M−1K = Ω2

[
1 −1
−1 1

]
+ ω2

0

[
1 0
0 1

]
. (1.2.31)

In the limit that Ω goes to zero the coupling between the masses becomes progressively
weaker. If Ω = 0, then the equations of motion reduce to those for two uncoupled
oscillators with the same characteristic frequency ω0.

1.2.3 The energy method

In this example of two coupled masses, it’s not entirely trivial to keep track of how the
two masses interact. Unfortunately, we’re forced into this by the Newtonian strategy
of specifying forces explicitly. Fortunately this is not the only way to skin the cat. For
systems in which energy conserved (no dissipation, also known as conservative systems),
the force is the gradient of a potential energy function.7

Since energy is a scalar quantity it is almost always a lot easier to deal with than the
force itself. In our 1-D system of masses and springs, that might not be apparent,
but even so using energy simplifies life significantly. Think about it: the potential en-
ergy of the system must be the sum of the potential energies of the individual springs.
And the potential energy of a spring is the spring constant times the square of amount
the spring is compresses or extended. So the potential energy of the system is just
1
2

[k1x
2
1 + k2(x2 − x1)2 + k3x

2
2]. Unlike when dealing with the forces, it doesn’t matter

whether we write the second term as x2 − x1 or x1 − x2 since it gets squared.

The energy approach is easily extended to an arbitrary number of springs and masses.
It’s up to us to define just what the system will be. For instance do we connect the end
springs to the wall, or do we connect the end masses? It doesn’t matter much except in
the labels we use and the limits of the summation. For now we will assume that we have
n springs, the end springs being connected to rigid walls, and n − 1 masses. So, n − 1
masses {mi}i=1,n−1 and n spring constants {ki}i=1,n. Then the total energy is

E = K.E. + P.E. =
1

2

n−1∑

i=1

miẋ
2
i +

1

2

n∑

i=1

ki(xi − xi−1)2. (1.2.32)

7The work done by a force in displacing a system from a to b is
∫ b
a F dx. If F = −dUdx , then

∫ b
a F dx =

−
∫
dU = −[U(b)− U(a)]. In other words the work depends only on the endpoints, not the path taken.

In particular, if the starting and ending point is the same, the work done is zero. This is true in 3
dimensions too where it is easier to visualize complicated paths.
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To derive the equations of motion, all we have to do is set mjẍj = − ∂U
∂xj

. Taking the

derivative is slightly tricky. Since j is arbitrary (we want to be able to study any mass),
there will be two nonzero terms in the derivative of U , corresponding to the two situations
in which one of the terms in the sum is equal to xj . This will happen when

• i = j, in which case the derivative is kj(xj − xj−1).

• i− 1 = j, in which case i = j + 1 and the derivative is −kj+1(xj+1 − xj).

Putting these two together we get

mjẍj = − ∂U
∂xj

= kj+1(xj+1 − xj)− kj(xj − xj−1). (1.2.33)

Once you get the hang of it, you’ll see that in most cases the energy approach is a lot
easier than dealing directly with the forces. After all, force is a vector, while energy is
always a scalar. For now, let’s simplify Equation 1.2.33 by taking all the masses to be
the same m and all the spring constants to be the same k. Then, using ω2

0 = k/m again,
we have

1

ω2
0

ẍj = xj+1 − 2xj + xj−1. (1.2.34)

1.2.4 Matrix form of the coupled spring/mass system

We can greatly simplify the notation of the coupled system using matrices. Let’s consider
the n mass case in Equation 1.2.34. We would like to be able to write this as

1

ω2
0

ü ≡




ẍ1

ẍ2

ẍ3

.

.

.
ẍn−1




= some matrix dotted into




x1

x2

x3

.

.

.
xn−1




≡ u. (1.2.35)

The symbol ≡ means the two things on either side are equal by definition.

Looking at Equation 1.2.34 we can see that this matrix must couple each mass to its
nearest neighbors, with the middle mass getting a weight of −2 and the neighboring
masses getting weights of 1. Thus the matrix must be
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


−2 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .
...

. . .

0 . . . 0 1 −2



. (1.2.36)

So we have

1

ω2
0

ü =




ẍ1

ẍ2

ẍ3

.

.

.
ẍn−1




=




−2 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .
...

. . .

0 . . . 0 1 −2







x1

x2

x3

.

.

.
xn−1




= u. (1.2.37)

If we denote the matrix by K, then we collapse these n coupled second order differential
equations to the following beautiful vector differential equation.

1

ω2
0

ü = K · u. (1.2.38)

We don’t yet have the mathematical tools to analyze this equation properly, that is why
we will spend a lot of time studying linear algebra. However we can proceed. Surprisingly
enough if we add even more springs and masses to our system, we will get an equation
we can solve analytically, but we need to an an infinite number of them! Let’s see how
we can do this.

First, let’s be careful how we interpret the dependent and independent variables. If I write
the vector of displacements from equilibrium as u, then its components are (u)i ≡ xi.
Let’s forget about x and think only of displacements u or (u)i. The reason is we want
to be able to use x as a variable to denote the position along the spring/mass lattice
at which we are measuring the displacement. Right now, with only a finite number of
masses, we are using the index i for this purpose. But we want to let i go to infinity and
have a continuous variable for this; this is what we will henceforth use x for. But before
we do that, let’s look at how we can approximate the derivative of a function. Suppose
f(x) is a differentiable function. Then, provided h is small

f ′(x) ≈ f(x+ h
2
)− f(x− h

2
)

h
. (1.2.39)

We can do this again for each of the two terms on the right hand side and achieve an
approximation for the second derivative:

f ′′(x) ≈ f(x+ h)− f(x)

h2
− f(x)− f(x− h)

h2

=
1

h2
(f(x + h)− 2f(x) + f(x− h)) . (1.2.40)
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Now suppose that we want to look at this approximation to f ′′ at points xi along the
x-axis. For instance, suppose we want to know f ′′(xi) and suppose the distance between
the xi points is constant and equal to h. Then

f ′′(xi) ≈
1

h2
(f(xi+1)− 2f(xi) + f(xi−1)) . (1.2.41)

Or, if we denote f(xi) by fi, then the approximate second derivative of the function at
a given i location looks exactly like the ith row of the matrix above. In the limit that
the number of mass points (and hence i locations) goes to infinity, the displacement u
becomes a continuous function of the spatial location, which we now refer to as x, and K
becomes a second derivative operator. To get the limit we have to introduce the lattice
spacing h:

1

ω2
0

ü = h2 1

h2
K · u. (1.2.42)

We can identify each row of 1
h2K · u as being the approximate second derivative of the

corresponding displacement. But we can’t quite take the limit yet, since ω0 is defined
in terms of the discrete mass and it’s not clear what this would mean in the limit of a
continuum. So let’s write this as

ü =
k

m

h3

h3
K · u =

k

h

h3

m

1

h2
K · u (1.2.43)

so that in the limit that the number of mass points goes to infinity, but the mass of
each point goes to zero and the spacing h goes to zero, we can identify m

h3 as the density
and k

h
as the stiffness per unit length. Let’s call the latter E. Now in this limit u is no

longer a finite length vector, but a continuous function of the position x. Since it is also
a function of time, these derivatives must become partial derivatives. So in this limit we
end up with

∂2u(x, t)

∂t2
=
E

ρ

∂2u(x, t)

∂x2
. (1.2.44)

This is called the wave equation.

Exercises

mm

k kk’
1.1 Write down the equations of motion for the system above in terms of the displace-

ments of the two masses from their equilibrium positions. Call these displacements
x1 and x2.

Answer: The equations of motion are
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mẍ1 + kx1 + k′(x1 − x2) = 0 (1.2.45)

mẍ2 + kx2 + k′(x2 − x1) = 0. (1.2.46)

1.2 What are the two characteristic frequencies? (I.e., the frequencies of the fast and
slow modes.)

Answer: Defining ω2
0 = k/m and Ω2 = k′/m, we have ω2

+ = ω2
0 and ω2

− = ω2
0 +2Ω2

. (The + and - sign denote sign of the square root.)This makes sense since if k′ = k
we get the familiar result.

1.3 What is the difference in frequency between the fast mode and the slow mode in
the limit that k′ → 0? What is the physical interpretation of this limit?

Answer: 0. This limit corresponds to the middle spring being cut or removed. So
both masses oscilate at the same frequency ω0.

1.4 Write down the equations of motion for a mass suspended from an undamped linear
spring. Initially the spring has no mass attached to it. It’s now at its relaxed length.
You apply a 100 gram mass to the spring, pull the mass down and let it go. You
measure its natural frequency as 2 Hz. What is the spring constant k? Don’t forget
that ω0 is measured in radians/second.

Answer:
√
k/m = ω0 = 4πs−1. So k = (4π)2.1kg/s2 = 15.8N/m.

1.5 Given that g = 980cm/s2, what displacement from the spring’s relaxed length
would you expect the mass to cause.

Answer: mg = kx, so x = mg/k = .1kg 9.8 m
s2/15.8 N

m
= .06m = 6cm.

1.6 Now suppose that the mass is sitting in a viscous fluid. What is the equation of
motion?

Answer: mẍ +mγẋ + kx = 0.

1.7 For the characteristic frequency you estimated above, what is the minimum damp-
ing required to ensure that the mass does not oscillate if you pull it down and let
it go.

Answer: γcritical = 2ω0 = 2× 2π × 2s−1 ≈ 25s−1.

1.8 With this minimum (or “critical”) damping, how long will it take for the mass to
come to rest?

Answer: Strictly speaking e−γt/2 is never zero for any finite t. So the answer is
infinite. But of course this is a non-physical result. It results from too simple a
mathematical model. It would make more sense to ask: how long will it take before
the displacement is, say, ε times the initial displacement, where ε is a small number.
This you can easily answer since you simply need to find the t such that e−γt/2 = ε.
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1.9 Prove that γ is the full width at half max of the ρ2 curve provided γ is small. Hint:
evaluate ρ2 at ω0 ± γ/2.

Answer: See question 13 below.

1.10 Estimate the Q of the two peaks in the curve below showing hypothetical amplitude
versus circular frequency.

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1

Answer: In both cases the Q is 10. That’s 100/10 and 200/20. Unless the Q is
very large it is not worth trying to be too precise about this measurement.

1.11 The equation describing the behavior of an RLC circuit are:

Lq̈ +Rq̇ +
1

C
q = V (t)

where q is the charge on the capacitor, L is the inductance of the coil, R is the
resistance, C the capacitance, and V is the applied voltage.

Reasoning by analogy with the spring/mass problem

(a) What is the damping constant (γ) for the circuit?

Answer: R/L.

(b) What is the characteristic frequency (ω0)?

Answer:
√

1
LC

(c) What is the Q?

Answer: ω0
L
R

= 1
R

√
L
C

(d) If the inductance is 25× 10−3 H (1 Henry = 1 volt per amp per second), what
capacitance is required to have a characteristic period of 1 second?

Answer:
√

1
LC

= ω0 = 2πf0 = 2π
1sec

. Therefore C = 1
L(2π)2 ≈ 1Farad.
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1.12 Solve the equations of motion for an undamped spring/spring mass system with
three identical springs (fixed endpoints) and masses m1 and m2 where m2 is much
greater than m1. In particular, what are the approximate frequencies of the slow
and fast modes?

Answer: The equations of motion are

m1ẍ1 + kx1 + k(x1 − x2) = 0 (1.2.47)

m2ẍ2 + kx2 + k(x2 − x1) = 0 (1.2.48)

or

ẍ1 + 2ω2
1x1 − ω2

1x2 = 0 (1.2.49)

ẍ2 + 2ω2
2x2 − ω2

2x1 = 0. (1.2.50)

Now since m1 << m2, it follows that ω2
1 = k

m1
>> ω2

2 = k
m2

. Inserting the usual

x1 = Aeiωt and x2 = Beiωt into the equations of motion we get the amplitude
equations:

(−ω2 + 2ω2
1)A = ω2

1B (1.2.51)

(−ω2 + 2ω2
2)B = ω2

2B. (1.2.52)

Eliminating A and B we get the equation for the frequency:

(−ω2 + 2ω2
1)(−ω2 + 2ω2

2) = ω2
1ω

2
2.

This is a quadratic equation for ω2 the roots of which are:

ω2
± = ω2

1 + ω2
2 ± ω2

1

√
1−

(
ω2

ω1

)2

+
(
ω2

ω1

)4

.

There are various levels of approximation we could pursue. First we could begin
by dropping the quartic term in the square root in comparison to the quadratic.
Or we could drop them both in comparison to 1. That would leave

ω2
± = ω2

1 + ω2
2 ± ω2

1

But of course if we are neglecting
(
ω2

ω1

)2
in comparison to 1, then we might as well

neglect ω2
2 in comparison to ω2

1, in which case we have

ω2
± = ω2

1 ± ω2
1.
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1.13 When we showed that γ was the full-width at half-max of the function ρ2 =
((ω2

0 − ω2)2 + γ2ω2)
−1

, we dropped certain terms by assuming that γ was small.
So the question is: how small is small? To answer this look at ρ2(ω0 + γ/2), as we
did in class, but don’t drop any terms. Show that the error we incurred in dropping
terms is on the order of 1/Q.

Answer: We want to evaluate ρ2 at ω0 + γ/2. It’s easiest to begin by looking at
1/ρ2(ω):

(ω2 − ω2
0)2 + γ2ω2.

To evaluate this we need to evaluate (ω2 − ω2
0)2 and γ2ω2 for ω = ω0 + γ/2:

ω2 = ω2
0 + ω0γ + γ2/4. So (ω2 − ω2

0)2 = ω2
0γ

2 + 1/2ω0γ
3 + γ4/16. Similarly

γ2ω2 = ω2
0γ

2 + ω0γ
3 + γ4/4. So

ρ−2(ω0 + γ/2) = 2ω2
0γ

2 +
3

2
ω0γ

3 +
5

16
γ4.

Now if we neglect the terms that are order γ3 and γ4 we get our previous result that
ρ2(ω0) = 1

2
ρ2(ω0 + γ/2); i.e., that γ is the FWHM (full-width at half maximum).

Now if we look at the ratio of the two highest powers of γ (neglecting constant
numerical factors) we see that this ratio is

γ3ω0

γ2ω2
0

=
γ

ω0
=

1

Q
.

So that if Q is roughly 100, then the error involved in taking γ to be the full-width
at half-max is around 1%. But if Q is 10, this error is roughly 10%. One of the
problems we face in geophysics, especially in the geophysics of the upper crust,
is that our Qs are relatively small. Laboratory measurements of the Q of fluid
saturated rocks might be less than 10!

1.3 More on coupled spring/mass lattices

The best tools for analyzing coupled linear systems involve Fourier analysis and eigenvec-
tor/eigenvalue analysis. We will develop as we go. But we can see the key ideas with a
simple example. Let us return to the two mass/three spring case in which m1 = m2 = m
and k1 = k2 = k3 = k, so there are two characteristic frequencies of vibration, the slow
mode (in phase motion at ω0) and the fast mode (out of phase motion at

√
3ω0). We can

arrive at these results from a more abstract algebraic point of view that will serve us well
for much more complicated situations. First let’s look at the 2× 2 matrix formulation of
the problem:
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ü + ω2
0Tu = 0 (1.3.1)

where u is a two-dimensional column vector with components x1 and x2 and

T =

[
2 −1
−1 2

]
.

Let us make our usual guess at the solution of linear, constant-coefficient ODEs, but now
in matrix notation:

u = eiωtz (1.3.2)

where z is a vector of amplitudes (i.e., it is independent of time). Inserting this guess
into Equation 1.3.1 gives

ω2
0Tz− ω2z = 0. (1.3.3)

We can write this slightly differently by introducing the 2× 2 unit matrix

I =

[
1 0
0 1

]

in which case we have (
ω2

0T − ω2I
)

z = 0. (1.3.4)

It is a basic fact in linear algebra, which we will prove soon, that any matrix equation
of the form Ax = 0 can have a nonzero solution x if and only if the determinant of A
is zero.8 In our case the matrix whose determinant must be zero is (ω2

0T − ω2I) which
equals [

2ω2
0 − ω2 −ω2

0

−ω2
0 2ω2

0 − ω2

]
.

The determinant of this matrix is (2ω2
0 − ω2)2 − ω4

0. For this to be zero it must be that
2ω2

0 − ω2 = ±ω2
0, or ω2

± = ω2
0, 3ω

2
0. But these are just the slow and fast modes we found

before. Further, if we substitute these frequencies back into Equation 1.3.4 we quickly
discover that the z that works for ω2

+ = ω2
0 is
[

1
1

]

while the z that works for ω2
− = 3ω2

0 is
[
−1
1

]
.

8For a 2 by 2 matrix [
a b
c d

]

the determinant is ad− bc.
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So we have rediscovered what we know before but from a slightly different viewpoint.
Equation 1.3.4 defines what are known as eigenvalues (the ω) and eigenvector (the z
associated with the ω). Notice that the eigenvectors have the property that

ω2
0Tz = ω2z. (1.3.5)

Remember, ω2
0 is fixed, as are the elements of the matrix T . So this equation says that

the matrix ω2
0T takes an unknown vector z and maps it into a constant of itself ω2z.

This is a rather unusual thing for a matrix to do.

The main advantage to introducing this new notation of eigenvalues and eigenvectors
is that it lets us conveniently treat much more complicated problems. Such as the free
oscillations of the entire planet! On the web page you will find a Mathematica notebook
that solves the eigenvalue/eigenvector problem for a lattice of many coupled masses (you
can select the number yourself).

A plot of some of these modes for a homogeneous (i.e., all the spring constants and masses
are the same) lattice of 50 mass points is given in Figure 1.12. Notice especially that
for the longer wavelengths, the modes are pure sinusoids, while for shorter wavelengths,
the modes become modulated sinusoids. We will see later that this is an absolutely
fundamental property of all discrete systems. The only way to make the high frequency
modes be purely sinusoidal is to let there be a continuously infinite number of springs
and masses.9

Now the equations of motion involve a second derivative with respect to time of the
position (the “a” in F = ma). We have gotten around this so far by looking for solutions
with an eiωt time dependence. (This is the definition of a normal mode in fact.) However,
with computers available we can tackle the time derivatives by brute force. On the web
page you will also find a Mathematica notebook that integrates the second derivatives for
the coupled spring/mass system by a method known as finite differences.10 Figure 1.13
shows some of the snapshots of the output of this program. In each column you see
the time evolution of an initial displacement imposed on the lattice; on the left side the
initial disturbance is smooth (a Gaussian in fact) on the right the initial disturbance is
sharp (corresponding to displacing one mass point and letting it go). In addition, to
make the problem slightly more interesting, I’ve put a bump in the middle to reflect the
waves slightly. You can’t see the bump since I’m not showing you the springs, but you
can see the reflected pulse. Play with the Mathematica code and try putting different
spring/mass distributions in, as well as initial conditions.

9This is known as the “continuum” approximation.
10The idea is very simple. We replace derivatives of the form ẋ(t) with “finite differences” ẋ(t) ≈

x(t + h) − x(t), and ẍ(t) ≈ ẋ(t + h) − ẋ(t) = x(t + 2h) − 2x(t + h) + x(t), and so on. We just need
to choose the step-size h small enough so that a) the equations are stable and b) the equations are
reasonably accurate.
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Figure 1.12: A sample of the normal modes (free oscillations) of a homogeneous 50 point
lattice with fixed ends. The lower frequency modes are purely sinusoidal; the higher
frequency modes become modulated sinusoids as a result of the dispersive effects of this
being a discrete system.
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Figure 1.13: Waves on a lattice (discrete string). The two columns of figures are snapshots
in time of waves propagating in a 1D medium. The only difference between the two is
the initial conditions, shown at the top of each column. On the right, we are trying
to propagate an inpulsive function (a displacement that is turned on only for one grid
point in space and time). On the left, we are propagating a smoothed version of this.
The medium is homogeneous except for an isolated reflecting layer in the middle. The
dispersion seen in the right side simulation is the result of the discretness of the medium:
waves whose wavelengths are comparable to the grid spacing sense the granularity of
the medium and therefore propagate at a slightly different speed than longer wavelength
disturbances.
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Chapter 2

Waves and Modes in One and Two
Spatial Dimensions

There are a number of different techniques for solving the 1-D wave equation:

∂2u

∂t2
= c2∂

2u

∂x2
(2.0.1)

Perhaps the oldest is the method of traveling waves. In this method we look for solutions
of the form u(x, t) = f(x+ ct) and u(x, t) = f(x− ct). Using the chain rule you can see
that

∂u

∂t
= ±cf ′

where the prime denotes differentiation with respect to the argument (x+ct for instance).
Similarly

∂2u

∂t2
= c2f ′′

∂2u

∂x2
= f ′′.

As a result, any differentiable function evaluated at x± ct is a solution of the 1-D wave
equation. Think of the function f as representing some shape. As time increases x must
increase at the rate ct in order for the shape to have the same value. This means that
the shape, evaluated at x − ct, is actually moving to the right at a constant speed of c.
Similarly x+ ct is moving to the left at speed ct.

37
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2.1 1-D Separation of Variables: Summary of the

Argument

Another approach to solving linear PDE’s (not just the wave equation) is separation of
variables. In certain coordinate systems we can find solutions which are factored. This
means that the multivariate solution can be written as the product of univariate func-
tions. The wave equation is separable in many coordinate systems, including Cartesian,
spherical, and cylindrical.

Here is an overview of the argument for one spatial variable in Cartesian coordinates.

We want to solve
∂2u

∂t2
= c2∂

2u

∂x2
(2.1.1)

such that, for example, u(0, t) = u(l, t) = 0 (clamped ends) and u(x, 0) = u0(x) and
∂u/∂t(x, 0) = v0(x) where u0 and v0 represent the initial displacement and velocity.

Guess a solution of the form u(x, t) = X(x)T (t). This doesn’t always work. Plug this
into Equation 2.1.1 and divide by XT .

This gives

c2X
′′

X
=
T̈

T
. (2.1.2)

This is an equation involving only x on the left and t on the right. The only way this
can be true is if both sides are constant. Call this constant −ω2.

So u = XT reduces (2.1.1) to two ODE’s:

T̈ + ω2T = 0 (2.1.3)

and

Ẍ +
ω2

c2
X = 0. (2.1.4)

Solve these as usual:

T (t) = A cos(ωt) +B sin(ωt) (2.1.5)

X(x) = C cos
(
ω

c
x
)

+D sin
(
ω

c
x
)

(2.1.6)

with A,B,C,D arbitrary constants.
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The clamped end boundary conditions imply that X(0) = X(l) = 0. Therefore C = 0
and ω/c = πn/l. Leaving:

T (t) = A cos
(
πnc

l
t
)

+B sin
(
πnc

l
t
)

(2.1.7)

X(x) = D sin
(
πn

l
x
)

(2.1.8)

Or,

u(x, t) = DA sin
(
πn

l
x
)

cos
(
πnc

l
t
)

+DB sin
(
πn

l
x
)

sin
(
πnc

l
t
)
. (2.1.9)

Let’s relabel the constant DA, calling it A, and DB, calling it B. Then

u(x, t) = A sin
(
πn

l
x
)

cos
(
πnc

l
t
)

+B sin
(
πn

l
x
)

sin
(
πnc

l
t
)
. (2.1.10)

This solution obviously will not satisfy general initial conditions. However, linearity of
the wave equation guarantees that if

A sin
(
πn

l
x
)

cos
(
πnc

l
t
)

+B sin
(
πn

l
x
)

sin
(
πnc

l
t
)

(2.1.11)

is a solution, then so is

∑

n

An sin
(
πn

l
x
)

cos
(
πnc

l
t
)

+Bn sin
(
πn

l
x
)

sin
(
πnc

l
t
)

(2.1.12)

where An and Bn are arbitrary constants.

Now we have some hope of satisfying the initial conditions. Let’s see. If

u(x, t) =
∑

n

An sin
(
πn

l
x
)

cos
(
πnc

l
t
)

+Bn sin
(
πn

l
x
)

sin
(
πnc

l
t
)

(2.1.13)

then

u(x, 0) =
∑

n

An sin
(
πn

l
x
)

(2.1.14)

and
∂u(x, t)

∂t
=
∑

n

Bn
πnc

l
sin

(
πn

l
x
)
. (2.1.15)

So this scheme will work if and only if we can choose the constants An and Bn such that

u0(x) =
∑

n

An sin
(
πn

l
x
)

(2.1.16)
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and

v0(x) =
∑

n

Bn
πnc

l
sin

(
πn

l
x
)
. (2.1.17)

This is our first example of a Fourier series. We will explore this last conjecture in detail.
That this should be possible is not remotely obvious in my opinion and that it is true is
one of the great triumphs of 19th century mathematical physics.

What’s the simplest solution we could construct? We would displace the string into one
of it’s normal modes, initially at rest, and then let go. This corresponds to making all
the Bn coefficients in 2.1.13 equal to zero (since the initial velocity is zero) and letting
all but one of the An be zero. For instance, if we displace the string into its fundamental
mode (sin(nπx/l), for n = 1) then the complete solution is

u(x, t) = sin(πx/l)cos(πct/l). (2.1.18)

That’s it. Notice that if you start the system out in one of its normal modes it stays there
forever. In a linear system there is absolutely no way to transfer energy amongst the
modes. Later on we’ll be able to prove this directly: the energy of each mode is constant,
so whatever energy a particular mode starts out with, it stays that way forever. (This is
not too hard to prove. Why don’t you give it a try. Just compute the energy (kinetic +
potential) and integrate over one complete period of the motion.)

The symbol to the left indicates that on the WWW page you will find a Mathematica
notebook; in this case one that solves the 1D problem for initial conditions corresponding
to the string being pulled up in the middle and released at t = 0. We use Mathematica’s
built-in Fourier series capability to represent a “hat” function as a 6 term sine-series.
(Don’t worry about the details of the Fourier analysis, we’ll be covering that later.) But
download this notebook and run it. You’ll see a beautiful and realistic animation.

The results of running this code are shown in Figure 2.1.

2.2 2-D separation of variables

Separation of variables for the 2-D wave equation proceeds in the same way.

c2

(
∂2u

∂x2
+
∂2u

∂y2

)
=
∂2u

∂t2
(2.2.1)

We assume a solution of the form

u(x, y, t) = X(x)Y (y)T (t). (2.2.2)

Equation 2.2.1 then becomes (after dividing by XY T )

c2

(
X ′′

X
+
Y ′′

Y

)
=
T̈

T
. (2.2.3)
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Figure 2.1: 4 of the 50 time snapshots of the plucked string. To compute this I approxi-
mated a triangular initial displacement by a 6 term Fourier series. This series is slowly
convergent since the triangle function is not differentiable in the middle. But 6 terms are
good enough to get a feel for what’s happening.

As in 1-D, for this to be true, both sides of this equation must be constant. Let’s call
this constant −ω2. 1 So we have

T̈

T
+ ω2 = 0 (2.2.4)

and

c2

(
X ′′

X
+
Y ′′

Y

)
= −ω2. (2.2.5)

Let’s rewrite this last equation as

X ′′

X
+
ω2

c2
= −Y

′′

Y
. (2.2.6)

We can apply the standard separation of variables argument again: an equation of x
on the left and an equation of y on the right; this must mean that both sides equal yet
another constant. Let’s call this one k2

y (for reasons that will become apparent shortly):

X ′′

X
+
ω2

c2
= −Y

′′

Y
= k2

y . (2.2.7)

So we have two de-coupled ODE’s for the spatial variables

X ′′ +

(
ω2

c2
− k2

y

)
X = 0 (2.2.8)

1You should convince yourself that it doesn’t matter what we call this constant, plus, minus, with or
without the square. It all works out the same in the end.
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and

Y ′′ + k2
yY = 0. (2.2.9)

We can preserve the symmetry of these two equations by inventing a new label for c2−k2
y .

We’ll call this k2
x. Then we have the nice pair of equations

X ′′ + k2
xX = 0 (2.2.10)

Y ′′ + k2
yY = 0 (2.2.11)

where, because of how we’ve defined kx we have

ω2

c2
= k2

x + k2
y. (2.2.12)

The constants kx and ky have the dimensions of reciprocal length. ω
c

is one over the
wavelength, times 2π.

So we’ve successfully reduced the 2-D wave equation, which is a partial differential equa-
tion in two space variables and time, to three un-coupled ODE’s. We already know how
to solve these equations, so let’s consider an interesting particular case. Let’s consider
a rectangular drum (a thin membrane, clamped on the sides) of lengths Lx and Ly.
We’ll put the origin of the coordinate system at x = 0, y = 0. Then in order for the
displacement to be zero at x = Lx and y = Ly, we must have

X(x) = A sin(kxx) (2.2.13)

Y (y) = B sin(kyy) (2.2.14)

where A and C are constants and kx = nπ/Lx and ky = mπ/Ly where m and n are
arbitrary integers. So the spatial variation of the drum’s vibration must be proportional
to

sin
(
nπx

Lx

)
sin

(
mπy

Ly

)
. (2.2.15)

Now since
ω2

c2
= k2

x + k2
y

we have
ω2

c2
= π2

(
n2

L2
x

+
m2

L2
y

)
(2.2.16)

As n and m vary over the integers, ω defines a doubly-infinite set of resonant frequencies.
The same argument we made before about initial conditions applies here. To be able to
solve a general initial value problem we need to be able to represent the initial conditions
in a Fourier series. This will be a 2-D Fourier series in x and y but that’s not a big deal.
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Figure 2.2: The first four modes of a rectangular drum. The aspect ratio of the drum is
1.5. The sides are clamped, so the displacement must be zero on the edge.

2.3 An Example

Here is a simple piece of Mathematica code that will draw the modes of a rectangular
plate.

Lx = 1.5;

Ly = 1;

c = 1;

d[x_,y_,m_,n_]= Sin[m Pi x/Lx]Sin[n Pi y/Ly];

w[n_,m_] = c Sqrt[(m Pi /Lx)^2 + (n Pi/Ly)^2];

Do[

Do[

ContourPlot[d[x,y,m,n],{x,0,Lx},{y,0,Ly},

AspectRatio->Ly/Lx];

,{m,2}];

,{n,2}];

The results of running this code are shown in Figure 2.2.
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Figure 2.3: A perspective view of mode 3-2.

And in Figure 2.3 is a 3D perspective view of one of the modes. On the WWW page
you’ll find a Mathematica notebook that animates this.

2.4 Degeneracy

When we studied the Zeeman effect we saw that in the absence of a magnetic field, all
three degrees of freedom oscillated with the same frequency. Applying a magnetic field
splits this degenerate frequency into 3. The same thing happens with the drum. The
expression we derived for the frequency of oscillation was

ω2
n,m = c2π2

(
n2

L2
x

+
m2

L2
y

)
.

Attaching the subscript to ω is a good reminder that it depends on the mode. Now,
clearly if Lx = Ly, then ωi,j = ωj,i. This is degeneracy. If Lx is just slightly different
than Ly, then the frequencies are different. But even if the frequencies are the same, the
modes n − m and m − n are clearly different. For example, in Figure 2.4 you will see
plots of the modes n = 1 m = 2 and m = 1 n = 2 for a drum for which Lx = Ly = 1.
The two modes have different vibrational patterns, but the same frequency.

Suppose we excited the drum at a frequency ω12 = ω21? What sort of pattern of nodal
lines would we see? Like waves, modes will interfere constructively or destructively. This
is a very interesting topic and we only touch upon it. But if the modes 12 and 21
were to constructively interfere, we would expect to see a vibrational pattern such as in
Figure 2.5.

Finally we point out an interesting connection between number theory and normal modes.
Let us rewrite our expression for the eigenfrequencies as

ω2
n,m =

c2π2

L2
x

(
n2 +m2L

2
x

L2
y

)
.
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Figure 2.4: Modes 21 (left) and 12 (right) for a square drum.
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Figure 2.5: The sum of the two modes 12 and 21.
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Let’s suppose, just to keep life simple, that c is equal to Lx/π. And let’s call the ratio
L2
x

L2
y

= ξ, so we have

ω2
n,m =

(
n2 + ξm2

)
.

So the number-theoretic question I want to ask is: are there integers i, j and p, q such that
the two frequencies ωi,j and ωp,q are equal? If they are equal then we have a degeneracy,
if not, we don’t. In other words, under what circumstances is it true that

p2 + ξq2 = i2 + ξ2?

Clearly this will be true if and only if

p2 − i2 = ξ(j2 − q2).

Assuming that j 6= q of course, this implies that

p2 − i2
j2 − q2

= ξ.

Since all of the numbers p, q, i, j are integers, this equation can only be true if ξ is a
rational number. Therefore we have proved that if the ratio of the lengths of the sides of
the drum is irrational, then there is no degeneracy. The Greeks, who knew all about har-
monics of music, described sides whose ratio was irrational as being “incommensurate”,
a word that means not measurable. The Platonists had a theory that the universe was
made of whole numbers. One would be a point. Two would be a line joining two points,
three would be a triangle, and so on. They thought that everything could be built up
out of these basic unit. It was a shock therefore to discover that the diagonal of a unit
square was incommensurate: it could not be measured by any ruler made from the side
of the square. No matter how finely you made the lines of the ruler, the diagonal would
fall somewhere in between two lines. And not mid-way either, somewhere off to one side
or the other.

2.5 Pictures of Modes

I’ll conclude this chapter with some pictures of real modes. A “stadium” is a geometrical
shape consisting of two circles on the end of a rectangle. The stadium shape has an
important role in modern theories of chaos. Figure 2.6 shows two modes of such a shape
visualized by dropping sand. The sand collects on node lines (i.e., places where the
displacement is zero). These are called Chladni figures.

This particular stadium consists of an aluminum plate 194 mm long by 100 mm wide by
about 3 mm thick. The plate is attached via a screw through a hole in the middle to a
resonator. The whole system is driven by an HP function generator putting out a 10 volt
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Figure 2.6: Chladni figures of two normal modes of a stadium plate. The mode on the
left has a frequency of 1754 Hz and the one right 2116 Hz.

Figure 2.7: Displacement of the stadium plate at two different times when being driven
in one of its normal modes. The measurement was performed with a laser-Doppler
vibrometer.

RMS sine wave at the frequencies indicated in the caption. For more Chaldni figures of
the stadium plate, see my web page.

Figure 2.7 shows a different visualization of a mode of the stadium. These are two
snapshots of the instantaneous displacement of the plane when being driven in one of its
modes. The measurements were made with a laser-Doppler vibrometer.

2.6 Spherical and Cylindrical Harmonics

In this section we will apply separation of variables to Laplace’s equation in spherical and
cylindrical coordinates. Laplace’s equation is important in its own right as the corner-
stone of potential theory, but the wave equation also involves the Laplacian derivative,
so the ideas discussed in this section will be used to build solutions of the wave equa-
tion in spherical and cylindrical coordinates too. The treatment given here is completely
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standard and I have nothing new to say on the subject. The results are given here for
convenience; but many excellent textbooks cover the same ground. A particular favorite
of mine, for undergraduates, is Classical Electromagnetic Radiation by Heald and Marion
[5].

Spherical coordinates are important when treating problems with spherical or nearly-
spherical symmetry. To a first approximation the earth is spherical and so is the hydrogen
atom, with lots of other examples in-between. Before we treat the wave equation, let’s
look at the simpler problem of Laplace’s equation:

∇2ψ(x, y, z) = 0. (2.6.1)

In Cartesian coordinates this is:

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
(2.6.2)

Laplace’s equation is fundamental in geophysics since it describes the behavior of static
electric and gravitational fields outside of the regions where this is charge or matter.
For example, a point charge q at the origin creates an electric potential ψ(r) = q

r
.

As an exercise, carry out the differentiations of 1
r

= (x2 + y2 + z2)
−1/2

and show that
∇2ψ(x, y, z) is identically zero for r > 0, where the charge is located.

Joseph Louis Lagrange introduced the idea of potentials into his work
on gravity. Lagrange is almost universally described as one of the great
French mathematicians, but he was actually born in Turin (in what is
now Italy) and baptized in the name of Giuseppe Lodovico Lagrangia.
Lagrange, who worked for over 20 years in Berlin, made fundamental
contributions in nearly all areas of mathematics and physics, in

particular astronomy, the stability of the solar system, mechanics, dynamics, fluid
mechanics, probability, and the foundations of the calculus as well as number theory.
Lagrange died in Paris in April 1813.

This and other biographical material you will find in this book comes largely from the
the St. Andrews University History of Mathematics WWW page:

http://www-groups.dcs.st-andrews.ac.uk /~history/Mathematicians.
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Pierre-Simon Laplace really was French, having been born in Nor-
mandy in 1749. Laplace’s mathematical talents were recognized early
and he moved to Paris when he was 19 to further his studies. Laplace
presented his first paper to the Académie des Sciences in Paris when
he was 21 years old. He went on to make profound advances in differ-
ential equations and celestial mechanics. Laplace survived the

reign of terror and was one of the first professors at the new Ecole Normale in Paris.
Laplace propounded the nebular hypothesis for the origin of the solar system in his
Exposition du systeme du monde. He also advanced the radical proposal that there
could exist stars so massive that light could not escape them–we call these black holes
now! And Traité du Mécanique Céleste is still print and widely read. Laplace also
made fundamental contributions to mathematics, but I will mention only his book
Théorie Analytique des Probabilités. He died on the third of March 1827 in Paris.

When solving boundary value problems for differential equations like Laplace’s equation,
it is extremely handy if the boundary on which you want to specify the boundary con-
ditions can be represented by holding one of the coordinates constant. For instance, in
Cartesian coordinates the surface of the unit cube can be represented by:

z = ±1, for − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1

y = ±1, for − 1 ≤ z ≤ 1 and − 1 ≤ x ≤ 1

x = ±1, for − 1 ≤ z ≤ 1 and − 1 ≤ y ≤ 1

On the other hand, if we tried to use Cartesian coordinates to solve a boundary value
problem on a spherical domain, we couldn’t represent this as a fixed value of any of the
coordinates. Obviously this would be much simpler if we used spherical coordinates, since
then we could specify boundary conditions on, for example, the surface r = constant.
The disadvantage to using coordinate systems other than Cartesian is that the differential
operators are more complicated. To derive an expression for the Laplacian in spherical
coordinates we have to change variables according to: x = r cosφ sin θ, y = r sinφ sin θ,
z = r cos θ. The angle θ runs from 0 to π, while the angle φ runs from 0 to 2π.

Here is the result, the Laplacian in spherical coordinates:

∇2ψ(x, y, z) =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
(2.6.3)
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Physical interpretation of the Laplacian

In 1-dimension, Laplace’s equation says: φ′′(x) = 0. This equation can be integrated
to give: φ(x) = ax+b. So in 1-D any linear function (or a constant) satisfies Laplace’s
equation. The Laplacian operator itself measures (more or less) the curvature of a
function of space. So since Laplace’s equation says that this must be zero, it stands
to reason the harmonic functions would be relatively smooth.

2.6.1 separation of variables

Look for solutions of the form: ψ(r, θ, φ) = R(r)P (θ)Q(φ). So,

∇2ψ(r, θ, φ) =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
(2.6.4)

=
PQ

r2

d

dr

(
r2dR

dr

)
+

RQ

r2 sin θ

d

dθ

(
sin θ

dP

dθ

)
+

RP

r2 sin2 θ

d2Q

dφ2
= 0.

Dividing, as usual, by RPQ we have:

1

Rr2

d

dr

(
r2dR

dr

)
+

1

Pr2 sin θ

d

dθ

(
sin θ

dP

dθ

)
+

1

Qr2 sin2 θ

d2Q

dφ2
= 0. (2.6.5)

This looks more complicated than what we had with rectangular coordinates. In fact it
looks like we’re stuck since all three terms involve both r and θ. However, multiplying
by r2 sin2 θ makes the third term just 1

Q
d2Q
dφ2 . So,

sin2 θ

R

d

dr

(
r2dR

dr

)
+

sin θ

P

d

dθ

(
sin θ

dP

dθ

)
= − 1

Q

d2Q

dφ2
. (2.6.6)

This we can make some progress with since we have a function of r and θ on the left side
and a function of φ on the right; therefore both sides must be equal to a constant, which
we’ll call m2. Thus

d2Q

dφ2
+m2Q = 0 (2.6.7)

and so Q must be proportional to eimφ. In order that the solution be continuous, we
must require that Q(φ) = Q(φ+ 2π) so m must be an integer. Of course, it may happen
that one is interested in solving a boundary on a subset of a sphere, in which case it may
not be true that Q is continuous; in that case m need not be an integer.

Next, for the r and θ part of Equation 2.6.6.

sin2 θ

R

d

dr

(
r2dR

dr

)
= −sin θ

P

d

dθ

(
sin θ

dP

dθ

)
+m2. (2.6.8)
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Again, to separate the r and θ we divide by sin2 θ:

1

R

d

dr

(
r2dR

dr

)
= − 1

P sin θ

d

dθ

(
sin θ

dP

dθ

)
+

m2

sin2 θ
. (2.6.9)

Now we can introduce another separation constant, call it k2. With this we get the radial
equation:

1

R

d

dr

(
r2dR

dr

)
= k2. (2.6.10)

This turns out to be easy to solve if we guess a trial solution of the form R = Arα.
Plugging this into the radial equation we get:

α(α+ 1)Arα − k2Arα = 0 (2.6.11)

which implies that k2 = α(α+ 1). Now if we were to write the separation constant k2 as
k2 = `(`+ 1), then it would be easy to see that

α(α+ 1) = `(`+ 1) (2.6.12)

is the same as

(α− `)(α + (`+ 1) = 0. (2.6.13)

This equation is satisfied for α = ` and α = −(` + 1). In other words, the solution to

1

R

d

dr

(
r2dR

dr

)
= `(`+ 1) (2.6.14)

is

R(r) = A`r
` +B`r

−(`+1). (2.6.15)

Lastly, we must solve the θ equation for P (i.e., the right side of Equation 2.6.9 set equal
to `(`+ 1)):

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+

[
`(`+ 1)− m2

sin2 θ

]
P = 0. (2.6.16)

This is called Legendre’s equation and is sometimes written in terms of the variable
x = cos θ since then, 1

sin θ
d
dθ

= − d
dx

which leads to

d

dx

[
(1− x2)

dP

dx

]
+

[
`(`+ 1)− m2

1− x2

]
P. (2.6.17)

Remember that the angle θ runs from 0 to π, so the same interval in x corresponds to
[−1, 1].
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The solutions to Equations 2.6.16 or 2.6.17 are called associated Leg-
endre functions and are named after Adrien-Marie Legendre, one of
the towering figures of 18th and 19th century mathematics. Legendre
was born (Sept 1752) and died (Jan 1833) in Paris. He produced ma-
jor works on number theory, elliptic functions, geometry and celestial
mechanics.

The standard way to proceed with the solution of Legendre’s equation is by power series.
The solution P is expanded in a power series in x (or cos θ) of the form:

P (x) = (1− x2)m/2
∞∑

n=0

anx
n (2.6.18)

Since the solutions must be defined on the interval [−1, 1], we do not include any negative
powers of x. So, to find the coefficients an, we insert the power series into Equation 2.6.17
and derive a recursion relation. I will skip the details, which you can find in many applied
mathematics books, but the essential idea is that the power series solution diverges at the
end-points x = ±1 unless ` ≥ |m|. And in this case the power series actually terminates
and becomes a polynomial in x: the coefficients an are zero when n > ` − |m|. This
is why the solutions are called Legendre polynomials; they are written P`m(x), with `
and m integers and ` ≥ |m|. Strictly speaking P`m(x) are called associated Legendre
polynomials. The term Legendre polynomial is reserved to the special case of m = 0.

The case of axial symmetry: m = 0

The separation constant m appears in both the φ (i.e., Q) and θ (i.e., P ) equations.
However, if m = 0 then Q(φ) is just a constant. So, for problems which are symmetrical
about the z axis (independent of φ) the θ equation reduces to

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+ `(`+ 1)P = 0 (2.6.19)

while the x equation reduces to

(1− x2)
d2P

dx2
− 2x

dP

dx
+ `(`+ 1)P = 0. (2.6.20)

The solution depends on only one index now, `, and is written Pl(x). By examining the
recursion relation for the coefficients of the power series one can derive the following two
formulae for the Legendre polynomials:
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P`(x) =
1

2``!

d`

dx`

(
x2 − 1

)`
. (2.6.21)

P`m(x) = (−1)m(1− x2)m/2
dm

dxm
P`(x). (2.6.22)

Of course Pm
` reduces to P` when m = 0. These expression for the Legendre polynomials

are referred to as Rodrigues’ formulae.2

So the separable solutions to Laplace’s equation involves multiplying the r solutions
by the θ solutions by the φ solutions:

ψ(r, θ, φ) =

{
r`

r−(`+1)

}
P`m(cos θ)eimφ (2.6.23)

which reduces in the axi-symmetric case to

ψ(r, θ, φ) =

{
r`

r−(`+1)

}
P`(cos θ). (2.6.24)

This is the final result of separation of variables. You will have to take it on faith
for now that any solution of Laplace’s equation can be built up by superposition
out of these basic separation of variables solutions. In other words, any potential
function (solution to Laplace’s equation) can be written as:

ψ(r, θ, φ) =
∞∑

`=0

∑̀

m=−`

(
A`mr

` +B`mr
−(`+1)

)
Y`m(θ, φ). (2.6.25)

Shortly, when we solve boundary value problems for Laplace’s equation, all the work
will boil down to computing the A and B coefficients given the boundary values.

Here are the first few Legendre polynomials:

P1(x) = 1 (2.6.26)

P2(x) = x (2.6.27)

P3(x) =
1

2
(3x2 − 1) (2.6.28)

It is standard to put the θ and φ dependence of the solutions to Laplace’s equations to-
gether into a single set of functions called spherical harmonics.3 The spherical harmonics

2Rodriques was actually Benjamin Olinde, born in Bordeaux in 1794, the son of a wealthy Jewish
banker. Olinde studied mathematics at the Ecole Normale in Paris, taking his doctors degree in 1816
with a thesis containing the famous formulae for Legendre polynomials.

3A harmonic is any solution of Laplace’s equation.



54 CHAPTER 2. WAVES AND MODES IN ONE AND TWO SPATIAL DIMENSIONS

are defined as:

Y`m(θ, φ) =

√√√√2`+ 1

4π

(`−m)!

(`+m)!
P`m(θ, φ)eimφ. (2.6.29)

The first few spherical harmonics are:

Y00(θ, φ) =

√
1

4π
(2.6.30)

Y10(θ, φ) =

√
3

4π
cos θ (2.6.31)

Y1±1(θ, φ) = ∓
√

3

8π
sin θe±iφ (2.6.32)

Y20(θ, φ) =

√
5

16π
(2 cos2 θ − sin2 θ) (2.6.33)

Y2±1(θ, φ) = ∓
√

15

8π
cos θ sin θe±iφ (2.6.34)

Y2±2(θ, φ) =

√
15

32π
sin2 θe±2iφ (2.6.35)

2.6.2 Properties of Spherical Harmonics and Legendre

Polynomials

The Legendre polynomials and the spherical harmonics satisfy the following “orthogo-
nality” relations. We will see shortly that these properties are the analogs for functions
of the usual orthogonality relations you already know for vectors.

∫ −1

−1
P`′(x)P`(x)dx =

2

2`+ 1
δ``′ (2.6.36)

∫ −1

−1
P`′m(x)P`m(x)dx =

2

2`+ 1

(`+m)!

(`−m)!
δ``′ (2.6.37)

∫

4π
Y`m(θ, φ)Ȳ`′m′(θ, φ)dΩ =

∫ 2π

0

∫ π

0
Y`m(θ, φ)Ȳ`′m′(θ, φ) sin θdθdφ = δ``′δmm′ (2.6.38)
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where the over-bar denotes complex conjugation and Ω represents solid angle: dΩ ≡
sin θdθdφ. Using 4π as the limit of integration is symbolic of the fact that if you integrate
dΩ over the sphere (θ going from 0 to π and φ going from 0 to 2π) you get 4π. Notice
that the second relation is slightly different than the others; it says that for any given
value of m, the polynomials P`m and P`′m are orthogonal.

There is also the following “parity” property:

Y`m(π − θ, φ+ π) = (−1)`Y`m(θ, φ). (2.6.39)

orthogonal function expansions

The functions P`(x) have a very special property. They are complete in the set of func-
tions on [−1, 1]. This means that any (reasonable) function defined on [−1, 1] can be
represented as a superposition of the Legendre polynomials:

f(x) =
∞∑

`=0

A`P`(x). (2.6.40)

To compute the coefficients of this expansion we use the orthogonality relation exactly
as you would with an ordinary vector. For example, suppose you want to know the x−
component of a vector T. All you have to do is take the inner product of T with x̂. This
is because

T = Txx̂ + Tyŷ + Tzẑ

so
x̂ ·T = Txx̂ · x̂ + Tyx̂ · ŷ + Tzx̂ · ẑ = Tx

since x̂ · ẑ = x̂ · ŷ = 0 and x̂ · x̂ = 1. When you take the inner product of two vectors
you sum the product of their components. The analog of this for functions is to sum the
product of the values of the function at each point in their domains. Since the variables
are continuous, we use an integration instead of a summation. So the “dot” or inner
product of two functions f(x) and g(x) defined on [−1, 1] is:

(f, g) =
∫ 1

−1
f(x)g(x)dx. (2.6.41)

So, to find the expansion coefficients of a function f(x) we take the inner product of f
with each of the Legendre “basis vectors” P`(x):

∫ 1

−1
f(x)P`′(x)dx =

∞∑

`=0

A`

∫ 1

−1
P`(x)P`′(x)dx =

∞∑

`=0

A`
2

2`+ 1
δ``′ =

2A`′

2`′ + 1
. (2.6.42)

So, the `-th coefficient of the expansion of a function f(x) is

A` =
2`+ 1

2

∫ 1

−1
f(x)P`(x)dx (2.6.43)
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Similarly, we can expand any function defined on the surface of the unit sphere in terms
of the Y`m(θ, φ):

ψ(θ, φ) =
∞∑

`=0

∑̀

m=−`
A`mY`m(θ, φ) (2.6.44)

with expansion coefficients

A`m =
∫

4π
ψ(θ, φ)Ȳ`m(θ, φ)dΩ. (2.6.45)

For example, what is the expansion in spherical harmonics of 1? Only the ` = 0, m = 0
spherical harmonic is constant, so

1 =
√

4πY00.

In other words, A`m =
√

4πδ0,0.

What is a field?

The term “field” is used to refer to any function of space. This could be a scalar
function or it could be a vector or even tensor function. Examples of scalar fields
include: temperature, acoustic pressure and mass density. Examples of vector fields
include the electric and magnetic fields, gravity, elastic displacement. Examples of
tensor fields include the stress and strain inside continuous bodies.

2.7 Exercises

1. Apply separation of variables to Laplace’s equation in cylindrical coordinates:

∇2ψ(r, θ, z) =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
+
∂2ψ

∂z2
= 0.

answer: We make the, by now, standard assumption that we can write the solution
in the form ψ(r, θ, z) = R(r)Q(θ)Z(z). Plugging this into Laplace’s equation and
dividing by RQZ we have:

1

Rr

d

dr

(
r
dR

dr

)
+

1

r2Q

d2Q

dθ2
+

1

Z

d2Z

dz2
. (2.7.1)

At this point we have a choice as to the order of the solution. We could first isolate
the z equation or we could isolate the θ equation. Also, in choosing the sign of the
separation constant, we are in effect choosing whether we want an exponentially
decaying solution or a sinusoidal one. I suggest isolating the θ equation first since
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we almost always want our solutions to be continuous in angle. That means we
expect the fundamental θ dependence to be sinusoidal, so we write

r

R

d

dr

(
r
dR

dr

)
+
r2

Z

d2Z

dz2
= − 1

Q

d2Q

dθ2
= m2. (2.7.2)

This gives us
d2Q

dθ2
+m2Q = 0 (2.7.3)

which has solutions proportional to e±imθ. Now if we had chosen the separation
constant to be −m2, then we would have gotten

d2Q

dθ2
−m2Q = 0 (2.7.4)

the solutions of which are proportional to e±mθ. Since we usually don’t expect
exponential decay with angle, we choose the plus sign for the separation constant.
As we will see shortly, the choice is less clear cut for the other variables. In any
case we now have for the r, θ dependence:

r

R

d

dr

(
r
dR

dr

)
−m2 =

r2

Z

d2Z

dz2
(2.7.5)

or
1

Rr

d

dr

(
r
dR

dr

)
− m2

r2
= − 1

Z

d2Z

dz2
. (2.7.6)

Once again we must decide on the sign of the separation constant. Looking at the z
equation we could imaging either sinusoidal or exponential dependence. So let’s do
both cases. First let’s look for exponential z dependence. That means we’ll need a
negative separation constant, say, −k2:

1

Rr

d

dr

(
r
dR

dr

)
− m2

r2
= − 1

Z

d2Z

dz2
= −k2, (2.7.7)

which implies
r

R

d

dr

(
r
dR

dr

)
+ r2k2 −m2 = 0 (2.7.8)

and
d2Z

dz2
− k2Z = 0. (2.7.9)

The Z solutions are now proportional to e±iz.

Now for the R solutions. These satisfy

r
d

dr

(
r
dR

dr

)
+
(
r2k2 −m2

)
R = 0
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Figure 2.8: The first 3 cylindrical Bessel functions.

The constant k arose from z−separation, so if we set k = 0 this corresponds to no
z−dependence. This is useful, for example, in studying the potentials of long wires,
where we can neglect the z-dependence. It is easy to show, similarly to what we
did with the axi-symmetric spherical harmonics, that in the case k = 0, the radial
solutions are of the form rm and r−m (for m > 0). To see this just make a trial
solution of the form R(r) = Arα, then show that this satisfies the radial equation
if and only if α2 = m2.

The radial equation above is almost in the standard form of Bessel’s equation.

Friedrich Wilhelm Bessel (born 22 July 1784 in Minden, Westphalia,
died 17 March 1846 in Konigsberg, Prussia) was a leading figure in
19th century astronomy. Bessel made fundamental advances in the
calculation of planetary orbits and is also well-known for his work as
a teacher and educational reformer.

To get it in the standard form we make the substitution: u = kr, then

1

u

d

du

(
u
dR

du

)
+

(
1− m2

u2

)
R = 0 (2.7.10)

or after multiplication by u2:

u2d
2R

du2
+ u

dR

du
+
(
u2 −m2

)
R = 0 (2.7.11)

Solutions of this last equation are called cylindrical Bessel functions and are denoted
by Jm(u).

The power series solution to Bessel’s equation can be found in many textbooks on
differential equations and electricity and magnetism such as [5]. Here I will just
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quote the result:

Jm(u) =
um

2mm!

∞∑

`=0

(−1)`

22``!(m+ 1)(m + 2) · · · (m+ `)
u2` (2.7.12)

This is hard to deal with analytically. However for small and large values of u = kr,
there are nice analytic approximations:

Jm(kr) ≈ 1

(m + 1)!

(
kr

2

)m
kr << 1 (2.7.13)

and

Jm(kr) ≈
√

2

πkr
cos

(
kr − mπ

2
− π

4

)
kr >> 1 (2.7.14)

sinusoidal z-dependence and modified Bessel functions

On the other hand, if instead of choosing the separation constant to be −k2 we had
chosen k2, then

1

Rr

d

dr

(
r
dR

dr

)
− m2

r2
= − 1

Z

d2Z

dz2
= k2, (2.7.15)

and we would have gotten Z solutions proportional to e±ikz and the radial equation
would have been:

r
d

dr

(
r
dR

dr

)
− (k2r2 +m2)R = 0 (2.7.16)

or equivalently

r2d
2R

dr2
+ r

dR

dr
− (k2r2 +m2)R = 0. (2.7.17)

The solutions of this equation are called modified Bessel functions (of the first
kind).

2. Expand f(x) = e−|x| on [−1, 1] in terms of ` = 0, 1, 2 Legendre polynomials.

answer: A0 = 1− 1
e
. A1 = 0. A2 = 25

2
− 35

e
.

3. A grounded conducting sphere of radius a is placed in a plane parallel electric field
E = E0ẑ. What is the electric field outside the conductor?

answer: First we will compute the potential V (r, θ, φ) then we will take the gra-
dient of this to get the electric field. Since the electric field is axisymmetric about
the z−axis, in fact the potential does not depend on φ. So we can be sure that we
can write the unknown potential as:

V (r, θ) =
∞∑

`=0

(
A`r

` +B`r
−(`+1)

)
Pl(cos θ).
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We have two boundary conditions that we can apply. First the potential on the
surface is zero, so

V (r = a, θ) =
∞∑

`=0

(
A`a

` +B`a
−(`+1)

)
Pl(cos θ) = 0.

The second boundary condition is that as r → ∞, the potential must approach
that of the original, unperturbed E-field:

lim
r→∞ V (r, θ) = −E0z

where E = −∇(−E0z). If we apply the orthogonality condition to the r = a
boundary condition, we can see that

0 =
∞∑

`=0

(
A`a

` +B`a
−(`+1)

) ∫ 1

−1
Pl(x)P`′(x)dx

=
∞∑

`=0

(
A`a

` +B`a
−(`+1)

) 2

2`+ 1
δ``′

= A`a
` +B`a

−(`+1). (2.7.18)

So we end up with the constraint that: B` = −a2`+1A`.

Next we apply the large-r condition. In the limit of large r, our boundary condition
only constrains terms involving positive power of r, since the negative powers of r
go to zero. So we must have

lim
r→∞−E0r cos θ ≡ lim

r→∞−E0rP1(cos θ) =
∞∑

`=0

A`r
`P`(cos θ).

It is clear from this that we can satisfy the boundary condition at infinity only if
all the of A coefficients are zero expect the ` = 1 term. So A` = 0 for all ` except
1, and A1 = −E0. We combine this with the constraint we found on the A and B
coefficients above to get: B1 = −A1a

3 = E0a
3. With the result that the potential

everywhere outside the sphere is:

V (r, θ) = −E0r cos θ + E0a
3 cos θ

r2
= −E0

(
1−

(
a

r

)3
)
r cos θ.

From this it follows by taking the gradient in spherical coordinates that:

Er = E0

(
1 + 2

(
a

r

)3
)

cos θ

and

Eθ = −E0

(
1−

(
a

r

)3
)

sin θ.
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4. A grounded, spherical conductor of radius a is placed in an electric field such that
far away from the sphere the potential is V (r, θ, φ) = r2 sin 2θ cosφ. Find the
potential everywhere outside the sphere.

answer: We can write any solution of Laplace’s equation as:

ψ(r, θ, φ) =
∑

`,m

(
A`mr

` +B`mr
−(`+1)

)
Y`m(θ, φ). (2.7.19)

In this case we are told that far away from the conductor the potential is: r2 sin 2θ cos φ.
OK, for large r we can only say something about the A coefficients since the terms
involving the B coefficients decay at least as fast as 1/r. Of the A coefficients it
is clear that since the field must be proportional to r2 for large r, only the ` = 2
terms can be nonzero. So straight away we can see that for large r the field must
be of the form

ψ(r →∞, θ, φ) = r2 (A22Y22 + A21Y21 + A20Y20 + A2−1Y2−1 + A2−1Y2−2) .
(2.7.20)

If you look at the ` = 2 spherical harmonics you will see that only the m = 1 terms
are needed:

Y21 = −
√

15

8π
sin θ cos θeiφ

and

Y2−1 =

√
15

8π
sin θ cos θe−iφ

so √
8π

15
(Y2−1 − Y21) = 2 sin θ cos θ cosφ.

In fact, since sin 2θ = 2 sin θ cos θ, it follows that:

r2 sin 2θ cosφ =

√
8π

15
r2 (−Y21 + Y2−1) . (2.7.21)

Therefore Y21 = −A2−1 = −
√

8π
15
.

Now just as we did in the previous problem, we can apply the boundary condition
that ψ(r = a, θ, φ) = 0 to give a constraint on the A and B coefficients:

B`m = −a2`+1A`m. (2.7.22)

Hence only B21 = a5
√

8π
15

and B2−1 = −a5
√

8π
15

are nonzero. So now we have all
four nonzero coefficients in the spherical harmonic expansion of ψ:
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ψ(r, θ, φ) =

√
8π

15

[(
−r2 +

a5

r3

)
Y21 +

(
r2 − a5

r3

)
Y2−1

]

=

√
8π

15

(
r2 − a5

r3

)
(−Y21 + Y2−1) (2.7.23)

=

(
1−

(
a

r

)5
)
r2 sin 2θ cosφ. (2.7.24)

Notice that this agrees with the boundary condition when r = a. Always check
your results against what you know.

5. Suppose the potential is constant on a sphere of radius a: ψ(r = a, θ, φ) = V0.
Use the spherical harmonic expansion of Laplace’s equation to find the potential
everywhere on the exterior of the sphere.

answer: On the surface of the sphere, the potential is a constant. Only the
` = m = 0 spherical harmonic is constant so

ψ(r = a, θ, φ) = V0 = V0

√
4πY00. (2.7.25)

This means that only the ` = m = 0 term in the expansion of the field is present.
This tells us immediately that

ψ(r, θ, φ) =
(
A00 +B00r

−1
)
Y00. (2.7.26)

Usually we don’t care about constant potentials since they don’t contribute to the
electric or gravitational fields (the gradient of a constant is zero). So we can always
shift the potential by a constant amount without changing physics; this means that
we can ignore the A00 term. At r = a we have:

ψ(r = 0, θ, φ) = B00a
−1Y00 = V0

√
4πY00, (2.7.27)

so B00 = V0a
−1
√

4π and the complete potential outside the sphere is

ψ(r, θ, φ) =
(
V0a
√

4π
)
r−1Y00 =

aV0

r
. (2.7.28)

6. Consider the gravitational potential on the Earth’s surface. The Earth is not exactly
a sphere. A better approximation is:

ψ(r = R, θ, φ) = V0 (1− J2P2(cos θ))

where J2 and V0 are constants. This is a bit of a trick actually since we’re still
assuming the surface is a sphere. What is the potential for r > R?
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answer: On the surface r = R the potential depends only on θ, so

ψ(r = R, θ) = V0 (1− J2P2(cos θ)) . (2.7.29)

Since this problem is axi-symmetric (no φ-dependence), the complete solution of
Laplace’s equation is

ψ(r, θ) =
∞∑

`=0

(
A`r

` +B`r
−(`+1)

)
P`(cos θ). (2.7.30)

Applying the boundary condition we have

V0 (1− J2P2(cos θ)) =
∞∑

`=0

(
A`R

` +B`R
−(`+1)

)
P`(cos θ). (2.7.31)

Using the orthogonality of the Legendre polynomials this equation implies two
constraints on the A and B coefficients:

V0 = A0 +B0R
−1

and
−J2V0 =

(
A2R

2 +B2R
−3
)
.

The gravitational potential of the Earth cannot grow as you go farther away from
the surface, so the A2 term must be zero. And as before we can set any constant
potential term to zero. So we’re left with: B0 = RV0 and B2 = −J2V0R

3. Which
gives for the final solution:

ψ(r, θ, φ) =
V0R

r

[
1− J2

(
R

r

)2

P2(cos θ)

]
. (2.7.32)

The term J2 corresponds to the flattening of the Earth. If this term is zero, we’re
left with the usual 1/r potential which equals V0 on the surface. In any case, the
effects of the J2 term decay like 1/r2 as you recede from the Earth’s surface.

7. Consider two concentric, conducting spheres of radius r0 and r1 respectively. The
inner sphere is grounded while the outer sphere is held at a fixed potential V0.
Find the potential between the spheres by directly integrating Laplace’s equation
in spherical coordinates. Hint: this problem is spherically symmetric.

answer: The spherical symmetry implies that the solution depends only on r.
Therefore Laplace’s equation reduces to

∇2φ(r) =
1

r2

∂

∂r

(
r2∂φ

∂r

)
= 0.

This implies that r2 ∂φ
∂r

is a constant; call it c. Integrating once more we have

φ(r) = d− c

r
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where r is the second integration constant. Applying the two boundary conditions
we can see that c = V0(r1r0)

r1−r0 and d = c
r
. The final result is that

φ(r) = V0
r1

r

r − r0

r1 − r0
= V0

[
1− r0

r

1− r0
r1

]
.

8. Two functions f(x) and g(x) defined on an interval [−1, 1] are said to be orthogonal
on that interval if (f, g) ≡ ∫ 1

−1 f(x)g(x)dx = 0. Similarly we can define the squared
“length” of a function on the interval by: (f, f) =

∫ 1
−1 f

2(x)dx. Here are two

functions (polynomials of zeroth and first order) Q0(x) =
√

1
2

and Q1(x) =
√

3
2
x,

that are orthogonal and have unit length. Compute the unique quadratic function
Q2(x) by using the three conditions:

(Q0, Q2) = 0

(Q1, Q2) = 0

(Q2, Q2) = 1

answer: Since Q2 is a quadratic, it can be written Q2(x) = ax2 + bx + c. The
conditions (Q0, Q2) = 0 and (Q1, Q2) = 0 force b = 0 and c = −1/3a. The

normalization condition (Q2, Q2) gives c = 3
2

√
5
2
. So,

Q2(x) =
3

2

√
5

2

(
x2 − 1

3

)
.

9. • Give the spherical harmonic expansion of sin θ cosφ.

• If this is the potential on a conducting sphere of radius 1, what is the potential
for r > 1?.

answer: In the absence of any other fields, for solutions on the exterior of bodies
we want potentials that decay with r. So the general solution must be of the form

ψ(r, θ, φ) =
∞∑

`=0

∑̀

m=−`
A`mr

−(`+1)Y`m(θ, φ)

The boundary condition is:

ψ(r = 1, θ, φ) =
∞∑

`=0

∑̀

m=−`
A`mY`m(θ, φ) = sin θ cosφ.

But the right-hand side is

sin θ cosφ =
1

2

√
8π

3
(Y11 − Y1−1) .
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So clearly only the ` = 1 A−coefficients are nonzero: A11 = −A1−1 = 1
2

√
8π
3

. Hence,
the potential outside the sphere is

ψ(r, θ, φ) =
1

2

√
8π

3
r−2 (Y11 − Y1−1) =

sin θ cos φ

r2
.

10. The 2D Laplace’s equation in Cartesian coordinates is:

∇2ψ(x, y) =
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0.

Apply separation of variables to this equation to get two ordinary differential equa-
tions. Solve these equations. Explain how the choice of sign of the separation
constant influences the solutions.

answer: By the now standard argument, we look for solutions of the formX(x)Y (y),
in which case Laplace’s equation reduces to:

X ′′

X
= −Y

′′

Y
.

So we can choose the separation constant to be either k2 or −k2. If we choose the
plus sign, then the solution will be oscillatory in the y direction and exponential in
the x direction. If we choose the negative sign, the solution will be oscillatory in
the x direction and exponential in the y direction. E.g., with the positive sign we
get

X ′′ − k2X = 0

and

Y ′′ + k2Y = −0.

So the basic solutions are of the form

ψ(x, y) =
∑

k

eikxe−ky

or

ψ(x, y) =
∑

k

e−kxeiky

2.8 More on vectors

In the next chapter we will study vectors systematically, but you already know quite a
lot about them. You were taught that a vector is something that has both a magnitude
(length) and direction. Examples include gravity and the electric field. You also know
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that any vector can be resolved into components. For example a vector T in three
dimensions can be resolved as

T = Txx̂ + Tyŷ + Tzẑ (2.8.1)

We will refer to the set of all three dimensional vectors like this as R3 since it’s really
the real line R1 in each of the three dimensions. The x− y plane is R2.

To find the components of the vector in the various directions we “dot” the basis vectors
(i.e., x̂, ŷ and ẑ) into T. For example

x̂ ·T = Txx̂ · x̂ + Tyx̂ · ŷ + Tzx̂ · ẑ. (2.8.2)

But since the basis vectors are mutually perpendicular (orthogonal) x̂ · ŷ = x̂ · ẑ = 0 and
x̂ · x̂ = 1. So Tx = x̂ ·T and similarly for the other components.

You can see that what really counts are the components of the vector in the mutually
orthogonal directions. It doesn’t really matter what we call these directions so we could
also write

T = Txx̂ + Tyŷ + Tzẑ = T1ê1 + T2ê2 + T3ê3 =
3∑

i=1

Tiêi (2.8.3)

The advantage of labeling the directions by numbers is that it frees us from the constraints
of ordinary three-dimensional geometry. Consider a time-series. Suppose I record the
noon temperature for three days. Here are the data: (15.3, 8.5, 11.0). I can pretend that
these are three components of a vector in R3. The fact is there is no physical “daily
temperature vector” but I can treat these three numbers as if they were components
of a three-dimensional vector. Or they could be the first three samples of a seismic
trace. And if three, why not four? Or five? It turns out that a set of numbers such
as (15.3, 8.5, 11.0, 12.1, 14.3) has exactly the same sort geometrical properties in R5 as
(15.3, 8.5, 11.0) does in R3, it’s just that I can’t make a plot of this vector on a piece of
paper. I could extend this approach to quite long vectors, such as all the samples in a
typical seismic trace, which might number in the thousands. Suppose that

A = (a1, a2, a3...a1000)

is a one thousand sample seismic trace and

B = (b1, b2, b3...b1000)

is another. Anything you can do with a three-dimensional vector you can do with a
thousand-dimensional vector such as A and B, except plot them. We can add two
seismic traces component-wise just as you would add two force vectors:

A + B =
1000∑

i=1

Ai +Bi.



2.8. MORE ON VECTORS 67

We can take take the length of a seismic trace:

‖A‖2 =
1000∑

i=1

A2
i ,

which is just the Pythagorean theorem in a 1000-dimensional space.

We can even compute the “angle” between two traces: since A · B = ‖A‖ ‖B‖ cos θ
works for ordinary vectors, there is no reason we cannot extend the idea to these abstract
vectors. Then, the angle between the two traces is naturally:

cos θ =
A ·B
‖A‖ ‖B‖

=

∑1000
i=1 AiBi∑1000

i=1 A
2
i

∑1000
i=1 B

2
i

Don’t be put off by this apparently abstract notion. The point is we can manipulate
things like seismic traces as vectors and gain tremendous advantage from our prior geo-
metrical understanding in R3, even though we’re not in R3 any more. And for the final
stroke, you should not be surprised if I tell you that we need not limit ourselves to vectors
of finite length. Consider for example a power series:

f(x) =
∞∑

i=0

aix
i.

Think of the powers of x here as being like our basis vectors êi in R3. Then the coefficients
ai are just like the coefficients Ai of our length-1000 time series above; there just happens
to be an infinite number of them! Well, OK, here we do run into a minor spot of difficulty.
For a finite length series

∑N
i=0 aix

i we don’t have to worry about convergence, but for
infinite series like

∑∞
i=0 aix

i, we do. Apart from that, we can still use our geometrical
intuition even in spaces of infinite dimension.

Look again at the dot or inner product of two finite length vectors:

A ·B =
1000∑

i=1

AiBi

exactly as in R3. We can certainly use the same formula for the dot product of two
infinite dimensional vectors:

A ·B =
∞∑

i=1

AiBi

provided the sum converges. The dot product for functions is just like this except that
we can’t use a summation, we must use an integration:

f(x) · g(x) =
∫
f(x)g(x)dx
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where the integration is over whatever interval the functions are defined. It would be
unconventional to use the “dot” for the inner product of functions, although we could.
The standard notation for the dot product of functions is (f, g), thus

(f, g) ≡
∫
f(x)g(x)dx.

So, when we said a few pages ago that

∫ 1

−1
P`′(x)P`(x)dx =

2

2`+ 1
δ``′

this means that the dot product of any P` with any other is zero. So, (P0, P1) = 0 and
(P1, P23) = 0. It really does make sense to visualize P0, P1 and so on, as orthogonal
vectors in some infinite dimensional space. There is nothing super-complicated about
this idea; it really is quite natural when you get used to it. And not only does it save
you a lot of time in the long run, it also allows you to apply your geometrical insight to
solve problems that would be very difficult otherwise to solve.

One last thing. If I say that

axx̂ + ayŷ + azẑ = bxx̂ + byŷ + bzẑ

it will come as no surprise to you that this implies that the coefficients of each basis
vector must be equal ax = bx, ay = by, and az = bz. This is easy to prove just by dotting
the above equation with each basis vector in succession. But now suppose I say that

a0 + a1x = b0 + b1x?

Does this imply that a0 = b0 and a1 = b1? Yes and for exactly the same reason. The
basis vectors are 1 = P0 and x = P1 are mutually orthogonal (at least on [−1, 1])

∫ 1

−1
1 · xdx = 0.

Another way to see this is to re-arrange the equation a0 + a1x+ = b0 + b1x as:

(a0 − b0) = (b1 − a1)x.

But x is completely arbitrary here, so the only way this equation can possibly be true
for all x is if it really says 0 = 0x, or a0 = b0, and a1 = b1.

This orthogonality of the basis vectors is why we could say in the HW problem on
rotational elipticity of the Earth that an equation such as

V0 (1− J2P2(cos θ)) =
∞∑

`=0

(
A`R

` +B`R
−(`+1)

)
P`(cos θ). (2.8.4)



2.8. MORE ON VECTORS 69

forces us to conclude that
V0 = A0 +B0R

−1

and
−J2V0 =

(
A2R

2 +B2R
−3
)
.

The first equation comes from equating terms proportional P0 (which equals 1) on both
sides of equation 2.8.4 and the second comes from equating terms proportional to P2. All
the other P` terms are zero on the left side of equation 2.8.4 so they must be zero on the
right.
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Chapter 3

A Little More Linear Algebra

3.1 Linear Vector Spaces

In the last chapter we introduced a couple of ideas about vectors that no doubt seemed
very strange at first glance. For example, that the ordinary geometry and algebra of
vectors in three-dimensional physical space could be extended to spaces of any dimension,
and that objects that at first bore no resemblance to vectors you know about, seismic
traces for instance, had all the properties of physical vectors, you just couldn’t draw
pictures of them. We will be a little more systematic in this chapter; not much, just
a little. The main ideas that we need to understand are linear dependence, orthogonal
projection, orthogonal subspaces, and eigenvectors/eigenvalues. If you want to consult
a standard reference on linear algebra, you could do no better than Strang’s beautiful
book [6]

You are already familiar with concrete examples of the algebra and geometry of vectors,
at least in the case of vectors in three-dimensional space. We can add any two, say,
force vectors and get another force vector. For example, consider a mass hanging from a
spring. The total force on the mass is the sum of the gravitational force (which is pointed
down) and the restoring force of the spring (which can be either up or down depending
on where the mass is relative to its equilibrium position). We can add the individual
forces to get the total force because they are vectors. We can also scale any such vector
by a numerical quantity and still have a legitimate vector.

However, we also use vectors to encapsulate discrete information. If we record one seis-
mogram one second in length at a sample rate of 1000 samples per second, then we can
put these 1000 bytes of information in a 1000-tuple

(s1, s2, s3, · · · , s1000) (3.1.1)

where si is the i-th sample, and treat it just as we would a 3-component physical vec-

71
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tor. That is, we can add any two such vectors together, scale them, and so on. When
we “stack” seismic traces, we’re just adding these n-dimensional vectors component by
component

s+ t = (s1 + t1, s2 + t2, s3 + t3, · · · , s1000 + t1000). (3.1.2)

Now, the physical vectors have a life independent of the particular 3-tuple we use to
represent them. We will get a different 3-tuple depending on whether we use Cartesian
or spherical coordinates, for example, but the force vector itself is independent of these
considerations. Whereas our use of vector spaces is purely abstract. There is no physical
seismogram vector; all we have is the n-tuple.

In fact, the mathematical definition of a vector space is sufficiently general to incorporate
objects that you might not consider as vectors at first glance–such as functions and
matrices. The definition of such a space actually requires two sets of objects: a set of
vectors V and a one of scalars F . For our purposes the scalars will always be either the
real numbers R or the complex numbers C.

Definition 1 Linear Vector Space A linear vector space over a field F of scalars is
a set of elements V together with a function called addition from V × V into V 1 and a
function called scalar multiplication from F×V into V satisfying the following conditions
for all x, y, z ∈ V and all α, β ∈ F :

V1: (x+ y) + z = x+ (y + z)

V2: x+ y = y + x

V3: There is an element 0 in V such that x+ 0 = x for all x ∈ V .

V4: For each x ∈ V there is an element −x ∈ V such that x+ (−x) = 0.

V5: α(x+ y) = αx + αy

V6: (α + β)x = αx+ βx

V7: α(βx) = (αβ)x

V8: 1 · x = x

The simplest example of a vector space is Rn, whose vectors are n-tuples of real numbers.
Addition and scalar multiplication are defined component-wise:

(x1, x2, · · · , xn) + (y1, y2, · · · , yn) = (x1 + y1, x2 + y2, · · · , xn + yn) (3.1.3)

1The Cartesian product A×B of two sets A and B is the set of all ordered pairs (a, b) where a ∈ A
and b ∈ B.
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and

α(x1, x2, · · · , xn) = (αx1, αx2, · · · , αxn). (3.1.4)

In the case of n = 1 the vector space V and the field F are the same. So trivially, F is a
vector space over F .

A few observations: first, by adding −x to both sides of x + y = x, you can show that
x + y = x if and only if y = 0. This implies the uniqueness of the zero element and also
that α · 0 = 0 for all scalars α.

Functions themselves are vectors according to this definition. Consider the space of
functions mapping some nonempty set onto the scalars, with addition and multiplication
defined by:

[f + g](t) = f(t) + g(t) (3.1.5)

and

[αf ](t) = αf(t). (3.1.6)

We use the square brackets to separate the function from its arguments. In this case, the
zero element is the function whose value is zero everywhere. And the minus element is
inherited from the scalars: [−f ](t) = −f(t).

3.2 Matrices

The set of all n×m matrices with scalar entries is a linear vector space with addition
and scalar multiplication defined component-wise. We denote this space by Rn×m. Two
matrices have the same dimensions if they have the same number of rows and columns.
We use upper case roman letters to denote matrices, lower case roman2 to denote ordinary
vectors and greek letters to denote scalars. For example, let

A =




2 5
3 8
1 0


 . (3.2.1)

Then the components of A are denoted by Aij . The transpose of a matrix, denoted by
AT , is achieved by exchanging the columns and rows. In this example

AT =

[
2 3 1
5 8 0

]
. (3.2.2)

Thus A21 = 3 = AT
12.

2For emphasis, and to avoid any possible confusion, we will henceforth also use bold type for ordinary
vectors.
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You can prove for yourself that

(AB)T = BTAT . (3.2.3)

A matrix which equals its transpose (AT = A) is said to be symmetric. If AT = −A the
matrix is said to be skew-symmetric. We can split any square matrix A into a sum of a
symmetric and a skew-symmetric part via

A =
1

2
(A + AT ) +

1

2
(A− AT ). (3.2.4)

The Hermitian transpose of a matrix is the complex conjugate of its transpose. Thus if

A =

[
4− i 8 12 + i
−12 −8 −4− i

]
(3.2.5)

then

ĀT ≡ AH =




4 + i −12
8 −8

12− i −4 + i


 . (3.2.6)

Sometimes it is useful to have a special notation for the columns of a matrix. So if

A =




2 5
3 8
1 0


 (3.2.7)

then we write

A =
[

a1 a2

]
(3.2.8)

where

a1 =




2
3
1


 . (3.2.9)

Addition of two matrices A and B only makes sense if they have the same number of
rows and columns. In which case we can add them component-wise

(A+B)ij = [Aij +Bij] . (3.2.10)

For example if

A =

[
1 2 3
−3 −2 −1

]
(3.2.11)

and

B =

[
0 6 2
1 1 1

]
(3.2.12)
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Then

A+B =

[
1 8 5
−2 −1 0

]
. (3.2.13)

Scalar multiplication, once again, is done component-wise. If

A =

[
1 2 3
−3 −2 −1

]
(3.2.14)

and α = 4 then

αA =

[
4 8 12
−12 −8 −4

]
. (3.2.15)

So both matrices and vectors can be thought of as vectors in the abstract sense. Matrices
can also be thought of as operators acting on vectors in Rn via the matrix-vector inner
(or “dot”) product. If A ∈ Rn×m and x ∈ Rm, then A · x = y ∈ Rn is defined by

yi =
m∑

j=1

Aijxj . (3.2.16)

This is an algebraic definition of the inner product. We can also think of it geometrically.
Namely, the inner product is a linear combination of the columns of the matrix. For
example,

A · x =



a11 a12

a21 a22

a31 a32


 ·
[
x1

x2

]
= x1



a11

a21

a31


+ x2



a12

a22

a32


 . (3.2.17)

A special case of this occurs when A is just an ordinary vector. We can think of this as
A ∈ Rn×m with n = 1. Then y ∈ R1 is just a scalar. A vector z in R1×m looks like

(z1, z2, z3, · · · , zm) (3.2.18)

so the inner product of two vectors z and x is just

[z1, z2, z3, · · · , zn] ·




x1

x2

x3
...
xn




= [z1x1 + z2x2 + z3x3 + · · ·+ znxn] . (3.2.19)

By default, a vector x is regarded as a column vector. So this vector-vector inner product
is also written as zTx or as (z,x). Similarly if A ∈ Rn×m and B ∈ Rm×p, then the matrix-
matrix AB product is defined to be a matrix in Rn×p with components

(AB)ij =
m∑

k=1

aikbkj. (3.2.20)
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For example,

AB =

[
1 2
3 4

] [
0 1
2 3

]
=

[
4 7
8 15

]
. (3.2.21)

On the other hand, note well that

BA =

[
0 1
2 3

] [
1 2
3 4

]
=

[
3 4
11 16

]
6= AB. (3.2.22)

This definition of matrix-matrix product even extends to the case in which both matrices
are vectors. If x ∈ Rm and y ∈ Rn, then xy (called the “outer” product and usually
written as xyT ) is

(xy)ij = xiyj. (3.2.23)

So if

x =

[
−1
1

]
(3.2.24)

and

y =




1
3
0


 (3.2.25)

then

xyT =

[
−1 −3 0
1 3 0

]
. (3.2.26)

Here is a brief summary of the notation for inner products:

x · y = xTy = (x,y) =
∑

i

xiyi = xiyi summation convention

3.3 Some Special Matrices

The identity element in the space of square n× n matrices is a matrix with ones on the
main diagonal and zeros everywhere else

In =




1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

. . .

0 . . . 0 0 1



. (3.3.1)
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As an exercise, show that AIn = InA = A for any n× x matrix A.

Even if the matrix is not square, there is still a main diagonal of elements given by Aii
where i runs from 1 to the smaller of the number of rows and columns. We can take
any vector in Rn and make a diagonal matrix out of it just by putting it on the main
diagonal and filling in the rest of the elements of the matrix with zeros. There is a special
notation for this:

diag(x1, x2, · · · , xn) =




x1 0 0 0 . . .
0 x2 0 0 . . .
0 0 x3 0 . . .
...

. . .

0 . . . 0 0 xn



. (3.3.2)

A matrix Q ∈ Rn×n is said to be orthogonal if QTQ = In. In this case, each column of
Q is an orthonormal vector: qi · qi = 1. So why are these matrices called orthogonal?
No good reason. As an example

Q =
1√
2

[
1 −1
1 1

]
. (3.3.3)

Now convince yourself that QTQ = In implies that QQT = In as well. In which case the
rows of Q must be orthonormal vectors too.

Another interpretation of the matrix-vector inner product is as a mapping from one
vector space to another. Suppose A ∈ Rn×m, then A maps vectors in Rm into vectors
in Rn. An orthogonal matrix has an especially nice geometrical interpretation. To see
this first notice that for any matrix A, the inner product (A · x) · y, which we write as
(Ax,y), is equal to (x, ATy), as you can readily verify. Similarly

(ATx,y) = (x, Ay). (3.3.4)

As a result, for an orthogonal matrix Q

(Qx, Qx) = (QTQx,x) = (x,x). (3.3.5)

Now, as you already know, and we will discuss shortly, the inner product of a vector with
itself is related to the length, or norm, of that vector. Therefore an orthogonal matrix
maps a vector into another vector of the same norm. In other words it does a rotation.

3.4 Matrix and Vector Norms

We need some way of comparing the relative “size” of vectors and matrices. For scalars,
the obvious answer is the absolute value. The absolute value of a scalar has the property
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that it is never negative and it is zero if and only if the scalar itself is zero. For vectors
and matrices both we can define a generalization of this concept of length called a norm.
A norm is a function from the space of vectors onto the scalars, denoted by ‖·‖ satisfying
the following properties for any two vectors v and u and any scalar α:

Definition 2 Norms

N1: ‖v‖ > 0 for any v 6= 0 and ‖v‖ = 0⇔ v = 0

N2: ‖αv‖ = |α|‖v‖

N3: ‖v + u‖ ≤ ‖v‖+ ‖u‖

Property N3 is called the triangle inequality.

The most useful class of norms for vectors in Rn is the `p norm defined for p ≥ 1 by

‖x‖`p =

(
n∑

i=1

|xi|p
)1/p

. (3.4.1)

For p = 2 this is just the ordinary Euclidean norm: ‖x‖2 =
√

xTx. A finite limit of the
`p norm exists as p→∞ called the `∞ norm:

‖x‖`∞ = max
1≤i≤n

|xi| (3.4.2)

We won’t need matrix norms in this class, but in case you’re interested any norm on
vectors in Rn induces a norm on matrices via

‖A‖ = max
x6=0

‖Ax‖
‖x‖ . (3.4.3)

E.g., Let x = (1, 1), then ‖x‖ =
√

1 · 1 + 1 · 1 =
√

2.

3.5 Projecting Vectors Onto Other Vectors

Figure 3.1 illustrates the basic idea of projecting one vector onto another. We can always
represent one, say b, in terms of its components parallel and perpendicular to the other.
The length of the component of b along a is ‖b‖ cos θ which is also bTa/‖a‖

Now suppose we want to construct a vector in the direction of a but whose length is the
component of b along ‖b‖. We did this, in effect, when we computed the tangential force
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b

a

a - b

b cos θ
θ

x

y

Figure 3.1: Let a and b be any two vectors. We can always represent one, say b, in terms
of its components parallel and perpendicular to the other. The length of the component
of b along a is ‖b‖ cos θ which is also bTa/‖a‖.

of gravity on a simple pendulum. What we need to do is multiply ‖b‖ cos θ by a unit
vector in the a direction. Obviously a convenient unit vector in the a direction is a/‖a‖,
which equals

a√
aTa

.

So a vector in the a with length ‖b‖ cos θ is given by

‖b‖ cos θâ =
aTb

‖a‖
a

‖a‖ (3.5.1)

=
a

‖a‖
aTb

‖a‖ =
aaTb

aTa
=

aaT

aTa
b (3.5.2)

As an exercise verify that in general a(aTb) = (aaT )b. This is not completely obvious
since in one expression there is an inner product in the parenthesis and in the other there
is an outer product.

What we’ve managed to show is that the projection of the vector b into the direction of
a can be achieved with the following matrix (operator)

aaT

aTa
.

This is our first example of a projection operator.
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3.6 Linear Dependence and Independence

Suppose we have n nonzero vectors

{x1,x2, · · · ,xn} (3.6.1)

of the same dimension. The question is, under what circumstances can the linear com-
bination of these vectors be zero:

α1x1 + α2x2 + · · ·αnxn = 0. (3.6.2)

If this is true with at least one of the coefficients αi nonzero, then we could isolate a
particular vector on the right hand side, expressing it as a linear combination of the
other vectors. In this case the original set of n vectors are said to be linearly dependent.
On the other hand, if the only way for this sum of vectors to be zero is for all the
coefficients themselves to be zero, then we say that the vectors are linearly independent.

Now, this linear combination of vectors can also be written as a matrix-vector inner
product. With a = (α1, α2, · · · , αn), and X = (x1,x2, · · · ,xn) we have the condition for
linear dependence being

Xa = 0 (3.6.3)

for some nonzero vector a, and the condition for linear independence being

Xa = 0⇒ a = 0. (3.6.4)

As a result, if we are faced with a linear system of equations to solve

Ax = b (3.6.5)

we can think in two different ways. On the one hand, we can investigate the equation in
terms of the existence of a vector x satisfying the equation. On the other hand, we can
think in terms of the compatibility of the right hand side with the columns of the matrix.

Linear independence is also central to the notion of how big a vector space is–its di-
mension. It’s intuitively clear that no two linearly independent vectors are adequate
to represent an arbitrary vector in R3. For example, (1, 0, 0) and (0, 1, 0) are linearly
independent, but there are no scalar coefficients that will let us write (1, 1, 1) as a linear
combination of the first two. Conversely, since any vector in R3 can be written as a
combination of the three vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), it is impossible to have
more than three linearly independent vectors in R3. So the dimension of a space is the
number of linearly independent vectors required to represent an arbitrary element.
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3.7 The Four Fundamental Spaces

Now if we take two basis vectors R2 (1, 0) and (0, 1),3 and consider all possible linear
combinations of them–this is called the span of the two vectors–we will incorporate all
the elements in R2. On the other hand, if we consider these two vectors as being in R3,
so that we write them as (1, 0, 0) and (0, 1, 0), then their span clearly doesn’t fill up all of
R3. It does, however, fill up a subspace of R3, the x− y plane. The technical definition
of a subspace is that it is a subset closed under addition and scalar multiplication:

Definition 3 Subspaces A subspace of a vector space is a nonempty subset S that satisfies

S1: The sum of any two elements from S is in S, and

S2: The scalar multiple of any element from S is in S.

If we take a general matrix A ∈ Rn×m, then the span of the columns must be a subspace
of Rn. Whether this subspace amounts to the whole of Rn obviously depends on whether
the columns are linearly independent or not. This subspace is called the column space of
the matrix and is usually denoted by R(A), for “range”. The dimension of the column
space is called the rank of the matrix.

Another fundamental subspace associated with any matrix A is composed by the solutions
of the homogeneous equation Ax = 0. Why is this a subspace? Well, take any two such
solutions, say x and y and we have

A(x + y) = Ax + Ay = 0. (3.7.1)

Similarly,
A(αx) = αAx. (3.7.2)

This subspace is called the nullspace or kernel and is extremely important from the point
of view of inverse theory. As we shall see, in an inverse calculation the right hand side
of a matrix equations is usually associated with perturbations to the data. Vectors in
the nullspace have no effect on the data and are therefore unresolved in an experiment.
Figuring out what features of a model are unresolved is a major goal of inversion.

3.7.1 Spaces associated with a linear system Ax = y

The span of the columns is a subset of Rn and the span of the rows is a subset of
Rm. In other words the rows of A have m components while the columns of A have n
components. This is easiest to visual if you keep in mind a picture of a generic n by m
matrix (Figure 3.2).

3Any other pair of linearly independent vectors, such as (2, 0) and (1, 15) would also work.
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n x m

parametersmatrix data

m n

m

m n

n

m

n

n x m

Figure 3.2: A generic n×m matrix can have more columns than rows (top), more rows
than columns (bottom), or it could be square.

Now the column space and the nullspace are generated by A. What about the column
space and the null space of AT ? These are, respectively, the row space and the left
nullspace of A. The nullspace and row space are subspaces of Rm, while the column
space and the left nullspace are subspaces of Rn.

Here is probably the most important result in linear algebra: For any matrix whatso-
ever, the number of linearly independent rows equals the number of linearly independent
columns. We summarize this by saying that row rank = column rank. For a generic
n×m matrix, this is not an obvious result. We can summarize these spaces as follows:

Theorem 1 Fundamental Theorem of Linear Algebra Let A ∈ Rn×m. Then

1: Dimension of column space equals r, the rank.

2: Dimension of nullspace equals m− r.

3: Dimension of row space equals r.

4: Dimension of left nullspace equals n− r.
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3.7.2 A Geometrical Picture

Any vector in the null space of a matrix, must be orthogonal to all the rows (since each
component of the matrix dotted into the vector is zero). Therefore all the elements
in the null space are orthogonal to all the elements in the row space. In mathematical
terminology, the null space and the row space are orthogonal complements of one another.
Or, to say the same thing, they are orthogonal subspaces of Rm. Similarly, vectors in the
left null space of a matrix are orthogonal to all the columns of this matrix. This means
that the left null space of a matrix is the orthogonal complement of the column space;
they are orthogonal subspaces of Rn.

3.8 Matrix Inverses

A left inverse of a matrix A ∈ Rn×m is defined to be a matrix B such that

BA = I. (3.8.1)

A right inverse C therefore must satisfy

AC = I. (3.8.2)

If there exists a left and a right inverse of A then they must be equal since matrix
multiplication is associative:

AC = I ⇒ B(AC) = B ⇒ (BA)C = B ⇒ C = B. (3.8.3)

Now if we have more equations than unknowns then the columns cannot possibly span
all of Rn. Certainly the rank r must be less than or equal to n, but it can only equal n
if we have at least as many unknowns as equations. The basic existence result is then:

Theorem 2 Existence of solutions to Ax = y The system Ax = y has at least one
solution x for every y (there might be infinitely many solutions) if and only if the columns
span Rn (r = n), in which case there exists an m×n right inverse C such that AC = In.
This is only possible if n ≤ m.

Don’t be mislead by the picture above into neglecting the important special case when
m = n. The point is that the basic issues of existence and, next, uniqueness, depend on
whether there are more or fewer rows than equations. The statement of uniqueness is:

Theorem 3 Uniqueness of solutions to Ax = y There is at most one solution to
Ax = y (there might be none) if and only if the columns of A are linearly independent
(r = m), in which case there exists an m× n left inverse B such that BA = Im. This is
only possible if n ≥ m.
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Clearly then, in order to have both existence and uniqueness, we must have that r =
m = n. This precludes having existence and uniqueness for rectangular matrices. For
square matrices m = n, so existence implies uniqueness and uniqueness implies
existence.

Using the left and right inverses we can find solutions to Ax = y: if they exist. For
example, given a right inverse A, then since AC = I, we have ACy = y. But since
Ax = y it follows that x = Cy. But C is not necessarily unique. On the other hand, if
there exists a left inverse BA = I, then BAx = By, which implies that x = By.

Some examples. Consider first the case of more equations than unknowns. Let

A =



−1 0
0 3
0 0


 (3.8.4)

Since the columns are linearly independent and there are more rows than columns, there
can be at most one solution. You can readily verify that any matrix of the form

[
−1 0 γ
0 1/3 ι

]
(3.8.5)

is a left inverse. The particular left inverse given by the formula (ATA)−1AT (cf. the
exercise at the end of this chapter) is the one for which γ and ι are zero. But there
are infinitely many other left inverses. As for solutions of Ax = y, if we take the inner
product of A with the vector (x1, x2)T we get



−x1

3x2

0


 =



y1

y2

y3


 (3.8.6)

So, clearly, we must have x1 = −y1 and x2 = 1/3y2. But, there will not be any solution
unless y3 = 0.

Next, let’s consider the case of more columns (unknowns) than rows (equations). Let

A =

[
−1 0 0
0 3 0

]
(3.8.7)

Here you can readily verify that any matrix of the form


−1 0
0 1/3
γ ι


 (3.8.8)

is a right inverse. The particular right inverse (shown in the exercise at the end of this
chapter) AT (AAT )−1 corresponds to γ = ι = 0.

Now if we look at solutions of the linear system Ax = y with x ∈ R3 and y ∈ R2 we
find that x1 = −y1, x2 = 1/3y2, and that x3 is completely undetermined. So there is an
infinite set of solutions corresponding to the different values of x3.
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3.9 Elementary operations and Gaussian

Elimination

I am assuming that you’ve seen this before, so this is a very terse review. If not, see the
book by Strang in the bibliography.

Elementary matrix operations consist of:

• Interchanging two rows (or columns)

• Multiplying a row (or column) by a nonzero constant

• Adding a multiple of one row (or column) to another row (or column)

If you have a matrix that can be derived from another matrix by a sequence of elementary
operations, then the two matrices are said to be row or column equivalent. For example

A =




1 2 4 3
2 1 3 2
1 −1 2 3




is row equivalent to

B =




2 4 8 6
1 −1 2 3
4 −1 7 8




because we can add 2 times row 3 of A to row 2 of A; then interchange rows 2 and 3;
finally multiply row 1 by 2.

Gaussian elimination consists of two phases. The first is the application of elementary
operations to try to put the matrix in row-reduced form; i.e., making zero all the elements
below the main diagonal (and normalizing the diagonal elements to 1). The second
phase is back-substitution. Unless the matrix is very simple, calculating any of the four
fundamental subspaces is probably easiest if you put the matrix in row-reduced form
first.

3.9.1 Examples

1. Find the row-reduced form and the null-space of

A =

(
1 2 3
4 5 6

)
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Answer A row-reduced form of the matrix is
(

1 2 3
0 1 2

)

Now, some people reserve the term row-reduced (or row-reduced echelon) form for
the matrix that also has zeros above the ones. We can get this form in one more
step: (

1 0 −1
0 1 2

)

The null space of A can be obtained by solving the system

(
1 0 −1
0 1 2

)

x1

x2

x3


 =

(
0
0

)
.

So we must have x1 = x3 and x2 = −2x3. So the null space is is the line spanned
by

(1,−2, 1)

.

2. Solve the linear system Ax = y with y = (1, 1):

Answer

Any vector of the form (z − 1, 1− 2z, z) will do. For instance, (−1, 1, 0).

3. Solve the linear system Ax = y with y = (0,−1):

Answer One example is (
−2

3
,
1

3
, 0
)

4. Find the row-reduced form and the null space of the matrix

B =




1 2 3
4 5 6
7 8 9




Answer The row-reduced matrix is



1 0 −1
0 1 2
0 0 0




The null space is spanned by
(1,−2, 1)

.
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5. Find the row-reduced form and the null space of the matrix

C =




1 2 3
4 5 6
1 0 1




Answer The row-reduced matrix is



1 0 0
0 1 0
0 0 1




The only element in the null space is the zero vector.

6. Find the null space of the matrix

D =

(
1 1 1
1 0 2

)

Answer You can solve the linear system Dx = y with y = (0, 0, 0) and discover
that x1 = −2x3 = −2x2. This means that the null space is spanned (−2, 1, 1). The
row-reduced form of the matrix is

(
1 0 2
0 1 −1

)

7. Are the following vectors in R3 linearly independent or dependent? If they are
dependent express one as a linear combination of the others.








1
1
0


 ,




0
2
3


 ,




1
2
3


 ,




3
6
6








Answer The vectors are obviously dependent since you cannot have four linearly
independent vectors in a three dimensional space. If you put the matrix in row-
reduced form you will get 



1 0 0
0 1 0
0 0 1
0 0 0


 .

The first three vectors are indeed linearly independent. Note that the determinant
of 


1 0 1
1 2 2
0 3 3



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is equal to 3.

To find the desired linear combination we need to solve:

x




1
1
0


+ y




0
2
3


+ z




1
2
3


 =




3
6
6




or 


1 0 1
1 2 2
0 3 3






x
y
z


 =




3
6
6




Gaussian elimination could proceed as follows (the sequence of steps is not unique
of course): first divide the third row by 3

1 0 1 3
1 2 2 6
0 1 1 2

1 0 1 3
0 2 1 3
0 1 1 2

1 0 1 3
0 0 −1 −1
0 1 1 2

1 0 1 3
0 0 1 1
0 1 0 1

1 0 1 3
0 1 0 1
0 0 1 1

Thus we have z = y = 1 and x+ z = 3, which implies that x = 2. So, the solution
is (2, 1, 1) and you can verify that

2




1
1
0


+ 1




0
2
3


+ 1




1
2
3


 =




3
6
6




3.10 Least Squares

In this section we will consider the problem of solving Ax = y when no solution exists!
I.e., we consider what happens when there is no vector that satisfies the equations ex-
actly. This sort of situation occurs all the time in science and engineering. Often we
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make repeated measurements which, because of noise, for example, are not exactly con-
sistent. Suppose we make n measurements of some quantity x. Let xi denote the i-th
measurement. You can think of this as n equations with 1 unknown:




1
1
1
...
1



x =




x1

x2

x3
...
xn




Obviously unless all the xi are the same, there cannot be a value of x which satisfies all
the equations simultaneously. Being practical people we could, at least for this simple
problem, ignore all the linear algebra and simply assert that we want to find the value
of x which minimizes the sum of squared errors:

min
x

n∑

i=1

(x− xi)2 .

Differentiating this equation with respect to x and setting the result equal to zero gives:

xls =
1

n

n∑

i=1

xi

where we have used xls to denote the least squares value of x. In other words the value
of x that minimizes the sum of squares of the errors is just the mean of the data.

In more complicated situations (with n equations and m unknowns) it’s not quite so
obvious how to proceed. Let’s return to the basic problem of solving Ax = y. If y were
in the column space of A, then there would exist a vector x such that Ax = y. On the
other hand, if y is not in the column space of A a reasonable strategy is to try to find
an approximate solution from within the column space. In other words, find a linear
combination of the columns of A that is as close as possible in a least squares sense to
the data. Let’s call this approximate solution xls. Since Axls is, by definition, confined
to the column space of A then Axls − y (the error in fitting the data) must be in the
orthogonal complement of the column space. The orthogonal complement of the column
space is the left null space, so Axls − y must get mapped into zero by AT :

AT
(
Axls − y

)
= 0

or
ATAxls = ATy

These are called the normal equations. Now we saw in the last chapter that the outer
product of a vector or matrix with itself defined a projection operator onto the subspace
spanned by the vector (or columns of the matrix). If we look again at the normal
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equations and assume for the moment that the matrix ATA is invertible, then the least
squares solution is:

xls = (ATA)−1ATy

The matrix (ATA)−1AT is an example of what is called a generalized inverse of A. In the
even that A is not invertible in the usual sense, this provides a reasonable generalization
(not the only one) of the ordinary inverse.

Now A applied to the least squares solution is the approximation to the data from within
the column space. So Axls is precisely the projection of the data y onto the column
space:

Axls = A(ATA)−1ATy.

Before when we did orthogonal projections, the projecting vectors/matrices were orthog-
onal, so ATA term would have been the identity, but the outer product structure in Axls
is evident.

The generalized inverse projects the data onto the column space of A.

A few observations:

• When A is invertible (square, full rank) A(ATA)−1AT = AA−1(AT )−1AT = I, so
every vector projects to itself.

• ATA has the same null space as A. Proof: clearly if Ax = 0, then ATAx = 0. Going
the other way, suppose ATAx = 0. Then xTATAx = 0. But this can also be written
as (Ax, Ax) = ‖Ax‖2 = 0. By the properties of the norm, ‖Ax‖2 = 0⇒ Ax = 0.

• As a corollary of this, if A has linearly independent columns (i.e., the rank r = m)
then ATA is invertible.

Finally, it’s not too difficult to show that the normal equations can also be derived by
directly minimizing the following function:

‖Ax− y‖2 = (Ax− y, Ax− y).

This is just the sum of the squared errors, but for n simultaneous equations in m un-
knowns. You can either write this vector function out explicitly in terms of its components
and use ordinary calculus, or you can actually differentiate the expression with respect
to the vector x and set the result equal to zero. So for instance, since

(Ax, Ax) = (ATAx,x) = (x, ATAx)

differentiating (Ax, Ax) with respect to x yields 2ATAx, one factor coming from each
factor of x. The details will be left as an exercise.
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3.10.1 Examples of Least Squares

Let us return to the problem we started above:



1
1
1
...
1



x =




x1

x2

x3
...
xn




Ignoring linear algebra and just going for a least squares value of the parameter x we
came up with:

xls =
1

n

n∑

i=1

xi.

Let’s make sure we get the same thing using the generalized inverse approach. Now, ATA
is just

(1, 1, 1, ..., 1)




1
1
1
...
1




= n.

So the generalized inverse of A is

(ATA)−1AT =
1

n
(1, 1, 1, ..., 1) .

Hence the generalized inverse solution is:

1

n
(1, 1, 1, ..., 1)




x1

x2

x3
...
xn




=
1

n

n∑

i=1

xi

as we knew already.

Consider a more interesting example




1 1
0 1
0 2



(
x
y

)
=



α
β
γ




Thus x + y = α, y = β and 2y = γ. So, for example, if α = 1, and β = γ = 0, then
x = 1, y = 0 is a solution. In that case the right hand side is in the column space of A.
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But now suppose the right hand side is α = β = 0 and γ = 1. It is not hard to see that
the column vector (0, 1, 1)T is not in the column space of A. (Show this as an exercise.)
So what do we do? We solve the normal equations. Here are the steps. We want to solve
(in the least squares sense) the following system:




1 1
0 1
0 2



(
x
y

)
=




0
0
1




So first compute

ATA =

(
1 1
1 6

)
.

The inverse of this matrix is

(
ATA

)−1
=

1

5

(
6 −1
−1 1

)
.

So the generalized inverse solution (i.e., the least squares solution) is

xls =

(
1 −1/5 −2/5
1 1/5 2/5

)


0
0
1


 =

(
−2/5
2/5

)
.

The interpretation of this solution is that it satisfies the first equation exactly (since
x+ y = 0) and it does an average job of satisfying the second and third equations. Least
squares tends to average inconsistent information.

3.11 Eigenvalues and Eigenvectors

Recall that in Chapter 1 we showed that the equations of motion for two coupled masses
are

m1ẍ1 = −k1x1 − k2(x1 − x2).

m2ẍ2 = −k3x2 − k2(x2 − x1).

or, restricting ourselves to the case in which m1 = m2 = m and k1 = k2 = k

ẍ1 = − k
m
x1 −

k

m
(x1 − x2)

= −ω2
0x1 − ω2

0(x1 − x2)

= −2ω2
0x1 + ω2

0x2. (3.11.1)
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and

ẍ2 = − k
m
x2 −

k

m
(x2 − x1)

= −ω2
0x2 − ω2

0(x2 − x1)

= −2ω2
0x2 + ω2

0x1. (3.11.2)

If we look for the usual suspect solutions

x1 = Aeiωt (3.11.3)

x2 = Beiωt (3.11.4)

we see that the relationship between the displacement amplitudes A and B and ω can
be written as the following matrix equation:

(
2ω2

0 −ω2
0

−ω2
0 2ω2

0

)(
A
B

)
= ω2

(
A
B

)
. (3.11.5)

This equation has the form of a matrix times a vector is equal to a scalar times the same
vector:

Ku = ω2u. (3.11.6)

In other words, the action of the matrix is to map the vector ((A,B)T ) into a scalar
multiple of itself. This is a very special thing for a matrix to do.

Without using any linear algebra we showed way back on page 22 that the solutions of
the equations of motion had two characteristic frequencies (ω = ω0 and ω =

√
3ω0), while

the vector (A,B)T was either (1, 1)T for the slow mode (ω = ω0) or (1,−1)T for the fast
mode (ω =

√
3ω0). You can quickly verify that these two sets of vectors/frequencies do

indeed satisfy the matrix equation 3.11.5.

Now we will look at equations of the general form of 3.11.6 more systematically. We
will see that finding the eigenvectors of a matrix gives us fundamental information about
the system which the matrix models. Usually when a matrix operates on a vector, it
changes the direction of the vector as well as its length. But for a special class of vectors,
eigenvectors, the action of the matrix is to simply scale the vector:

Ax = λx. (3.11.7)

If this is true, then x is an eigenvector of the matrix A associated with the eigenvalue λ.
Now, λx equals λIx so we can rearrange this equation and write

(A− λI)x = 0. (3.11.8)

Clearly in order that x be an eigenvector we must choose λ so that (A − λI) has a
nullspace and we must choose x so that it lies in that nullspace. That means we must
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choose λ so that Det(A − λI) = 0. This determinant is a polynomial in λ, called the
characteristic polynomial. Let’s look at a simple example:

A =

(
5 1
1 5

)
. (3.11.9)

The characteristic polynomial equation is

(5− λ)2 − 1 = 0 (3.11.10)

the roots of which are
λ = 5± 1.

So now all we have to do is solve the linear systems
(

5 1
1 5

)(
y
y

)
= 6

(
y
y

)
(3.11.11)

and (
5 1
1 5

)(
y
y

)
= 4

(
y
y

)
(3.11.12)

You can easily see that in the first case (1, 1)T is a solution, while in the second (1,−1)T is.
So (1, 1)T is an eigevector associated with the eigenvalue 6 and (1,−1)T an is eigenvector
associated with the eigenvalue 4.

Here is another example Let

A =

(
5 3
4 5

)
. (3.11.13)

The characteristic polynomial is
λ2 − 10λ+ 13. (3.11.14)

The roots of this polynomial are

λ = 5 + 2
√

3, and λ = 5− 2
√

3. (3.11.15)

Now all we have to do is solve the two homogeneous systems:
[

2
√

3 3

4 2
√

3

] [
x1

x2

]
= 0 (3.11.16)

and [
−2
√

3 3

4 −2
√

3

] [
x1

x2

]
= 0 (3.11.17)

from which we arrive at the two eigenvectors

[ √
3

2

1

]
,

[
−
√

3
2

1

]
(3.11.18)
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But note well, that these eigenvectors are not unique. Because they solve a homogeneous
system, we can multiply them by any scalar we like and not change the fact that they
are eigenvectors.

This exercise was straightforward. But imagine what would have happened if we had
needed to compute the eigenvectors/eigenvalues of a 10 × 10 matrix. Can you imagine
having to compute the roots of a 10-th order polynomial? In fact, once you get past order
4, there is no algebraic formula for the roots of a polynomial. The eigenvalue problem is
much harder than solving Ax = y.

The following theorem gives us the essential computational tool for using eigenvectors.

Theorem 4 Matrix diagonalization Let A be an n × n matrix with n linearly inde-
pendent eigenvectors. Let S be a matrix whose columns are these eigenvectors. Then
S−1AS is a diagonal matrix Λ whose elements are the eigenvalues of A.

The proof is easy. The elements in the first column of the product matrix AS are precisely
the elements of the vector which is the inner product of A with the first column of S.
The first column of S, say s1, is, by definition, an eigenvector of A. Therefore the first
column of AS is λ1s1. Since this is true for all the columns, it follows that AS is a matrix
whose columns are λisi. But now we’re in business since

[λ1s1 λ2s2 · · ·λnsn] = [s1 s2 · · · sn] diag(λ1, λ2, · · · , λn) ≡ SΛ. (3.11.19)

Therefore AS = SΛ which means that S−1AS = Λ. S must be invertible since we’ve
assumed that all it’s columns are linearly independent.

Some points to keep in mind:

• Any matrix in Rn×n with n distinct eigenvalues can be diagonalized.

• Because the eigenvectors themselves are not unique, the diagonalizing matrix S is
not unique.

• Not all square matrices possess n linearly independent eigenvectors. For example,
what are the eigenvectors of (

0 1
0 0

)
? (3.11.20)

Well the characteristic polynomial of this matrix is simply λ2. So the roots are
both 0. So the eigenvectors of the matrix are any vectors in the null space. Now a

vector (x, y)T gets mapped into zero by

(
0 1
0 0

)
if an only if y = 0. So any vector

of the form (x, 0)T is an eigenvector.
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• A matrix can be invertible without being diagonalizable. For example,
(

3 1
0 3

)
. (3.11.21)

Its two eigenvalues are both equal to 3 and its eigenvectors cannot be linearly
independent. However the inverse of this matrix is straightforward

(
1/3 −1/9
0 1/3

)
. (3.11.22)

We can summarize these ideas with a theorem whose proof can be found in linear algebra
books.

Theorem 5 Linear independence of eigenvectors If n eigenvectors of an n×n ma-
trix correspond to n different eigenvalues, then the eigenvectors are linearly independent.

An important class of matrices for inverse theory are the real symmetric matrices. The
reason is that since we have to deal with rectangular matrices, we often end up treating the
matrices ATA and AAT instead. And these two matrices are manifestly symmetric. In the
case of real symmetric matrices, the eigenvector/eigenvalue decomposition is especially
nice, since in this case the diagonalizing matrix S can be chosen to be an orthogonal
matrix Q.

Theorem 6 Orthogonal decomposition of a real symmetric matrix A real sym-
metric matrix A can be factored into

A = QΛQT (3.11.23)

with orthonormal eigenvectors in Q and real eigenvalues in Λ.

3.12 Orthogonal decomposition of rectangular

matrices

4 For dimensional reasons there is clearly no hope of the kind of eigenvector decomposition
discussed above being applied to rectangular matrices. However, there is an amazingly
useful generalization that pertains if we allow a different orthogonal matrix on each
side of A. It is called the Singular Value Decomposition and works for any matrix
whatsoever. Essentially the singular value decomposition generates orthogonal bases
of Rm and Rn simultaneously.

4This section can be skipped on first reading.
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Theorem 7 Singular value decomposition Any matrix A ∈ Rn×m can be factored
as

A = UΛV T (3.12.1)

where the columns of U ∈ Rn×n are eigenvectors of AAT and the columns of V ∈ Rm×m

are the eigenvectors of ATA. Λ ∈ Rn×m is a rectangular matrix with the singular values
on its main diagonal and zero elsewhere. The singular values are the square roots of the
eigenvalues of ATA, which are the same as the nonzero eigenvalues of AAT . Further,
there are exactly r nonzero singular values, where r is the rank of A.

The columns of U and V span the four fundamental subspaces. The column space of A is
spanned by the first r columns of U . The row space is spanned by the first r columns of
V . The left nullspace of A is spanned by the last n− r columns of U . And the nullspace
of A is spanned by the last m− r columns of V .

A direct approach to the SVD, attributed to the physicist Lanczos, is to make a symmetric
matrix out of the rectangular matrix A as follows: Let

S =

[
0 A
AT 0

]
. (3.12.2)

Since A is in Rn×m, S must be in R(n+m)×(n+m). And since S is symmetric it has orthog-
onal eigenvectors wi with real eigenvalues λi

Swi = λiwi. (3.12.3)

If we split up the eigenvector wi, which is in Rn+m, into an n-dimensional data part and
an m-dimensional model part

wi =

[
ui
vi

]
(3.12.4)

then the eigenvalue problem for S reduces to two coupled eigenvalue problems, one for
A and one for AT

ATui = λivi (3.12.5)

Avi = λiui. (3.12.6)

We can multiply the first of these equations by A and the second by AT to get

ATAvi = λi
2vi (3.12.7)

AATui = λi
2ui. (3.12.8)

So we see, once again, that the model eigenvectors ui are eigenvectors of AAT and the
data eigenvectors vi are eigenvectors of ATA. Also note that if we change sign of the
eigenvalue we see that (−ui,vi) is an eigenvector too. So if there are r pairs of nonzero
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eigenvalues ±λi then there are r eigenvectors of the form (ui,vi) for the positive λi and
r of the form (−ui,vi) for the negative λi.

Keep in mind that the matrices U and V whose columns are the model and data eigen-
vectors are square (respectively n × n and m × m) and orthogonal. Therefore we have
UTU = UUT = In and V TV = V V T = Im. But it is important to distinguish between
the eigenvectors associated with zero and nonzero eigenvalues. Let Ur and Vr be the
matrices whose columns are the r model and data eigenvectors associated with the r
nonzero eigenvalues and U0 and V0 be the matrices whose columns are the eigenvectors
associated with the zero eigenvalues, and let Λr be the diagonal matrix containing the r
nonzero eigenvalues. Then we have the following eigenvalue problem

AVr = UrΛr (3.12.9)

ATUr = VrΛr (3.12.10)

AV0 = 0 (3.12.11)

ATU0 = 0. (3.12.12)

Since the full matrices U and V satisfy UTU = UUT = In and V TV = V V T = Im it can
be readily seen that AV = UΛ implies A = UΛV T and therefore

A = [Ur, U0]

[
Λr 0
0 0

] [
V T
r

V T
0

]
= UrΛrV

T
r , (3.12.13)

This is the singular value decomposition. Notice that 0 represent rectangular matrices
of zeros. Since Λr is r × r and Λ is n × m then the lower left block of zeros must be
n− r× r, the upper right must be r×m− r and the lower right must be n− r×m− r.

It is important to keep the subscript r in mind since the fact that A can be reconstructed
from the eigenvectors associated with the nonzero eigenvalues means that the experiment
is unable to see the contribution due to the eigenvectors associated with zero eigenvalues.

3.13 Eigenvectors and Orthogonal Projections

Above we said that the matrices V and U were orthogonal so that V TV = V V T = Im and
UTU = UUT = In. There is a nice geometrical picture we can draw for these equations
having to do with projections onto lines or subspaces. Let vi denote the ith column of
the matrix V . (The same argument applies to U of course.) The outer product viv

T
i is

an m×m matrix. It is easy to see that the action of this matrix on a vector is to project
that vector onto the one-dimensional subspace spanned by vi:

(
viv

T
i

)
x = (vTi x)vi.
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A “projection” operator is defined by the property that once you’ve applied it to a
vector, applying it again doesn’t change the result: P (Px) = Px, in other words. For
the operator viv

T
i this is obviously true since vTi vi = 1.

Now suppose we consider the sum of two of these projection operators: viv
T
i +vjv

T
j . This

will project any vector in Rm onto the plane spanned by vi and vj . We can continue this
procedure and define a projection operator onto the subspace spanned by any number p
of the model eigenvectors:

p∑

i=1

viv
T
i .

If we let p = m then we get a projection onto all of Rm. But this must be the identity
operator. In effect we’ve just proved the following identity:

m∑

i=1

viv
T
i = V V T = I.

On the other hand, if we only include the terms in the sum associated with the r nonzero
singular values, then we get a projection operator onto the non-null space (which is the
row space). So

r∑

i=1

viv
T
i = VrV

T
r

is a projection operator onto the row space. By the same reasoning

m∑

i=r+1

viv
T
i = V0V

T
0

is a projection operator onto the null space. Putting this all together we can say that

VrV
T
r + V0V

T
0 = I.

This says that any vector in Rm can be written in terms of its component in the null
space and its component in the row space of A. Let x ∈ Rm, then

x = Ix =
(
VrV

T
r + V0V

T
0

)
x = (x)row + (x)null. (3.13.1)

3.14 A few examples

This example shows that often matrices with repeated eigenvalues cannot be diagonalized.
But symmetric matrices can always be diagonalized.

A =

[
3 1
0 3

]
(3.14.1)
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The eigenvalues of this matrix are obviously 3 and 3. This matrix has a one-dimensional
family of eigenvectors; any vector of the form (x, 0)T will do. So it cannot be diagonalized,
it doesn’t have enough eigenvectors.

Now consider

A =

[
3 0
0 3

]
(3.14.2)

The eigenvalues of this matrix are still 3 and 3. But it will be diagonalized by any
invertible matrix! So, of course, to make our lives simple we will choose an orthogonal
matrix. How about

[
0 1
1 0

]
? (3.14.3)

That will do. But so will
1√
2

[
−1 1
1 1

]
. (3.14.4)

So, as you can see, repeated eigenvalues give us choice. And for symmetric matrices we
nearly always choose to diagonalize with orthogonal matrices.

Exercises

3.1 Solve the following linear system for a, b and c.



−2 1 0
1 −2 1
0 1 −2






a
b
c


 =




0
0
0




3.2 Consider the linear system

[
a b
b d

] [
x
y

]
=

[
0
0

]

Assume x and y are nonzero. Try to solve this system for x and y and thereby
show what conditions must be put on the elements of the matrix such that there
is a nonzero solution of these equations.
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3.3 Here is a box generated by two unit vectors, one in the x direction and one in the

y direction. (1,0)

(0,1)

x

y

If we take a two by two matrix

A =

[
a b
b d

]

and apply it to the two unit vectors, we get two new vectors that form a different
box. (I.e., take the dot product of A with the two column vectors (1, 0)T and
(0, 1)T .) Draw the resulting boxes for the following matrices and say in words what
the transformation is doing.

(a) [
1 −1
1 1

]

(b) [
2 0
0 2

]

(c) [
2 0
0 1/2

]

(d) [
−1 0
0 −1

]

(e) [
−2 1
1 −2

]

3.4 For the matrices

A =

[
1 0
2 1

]
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and

B =

[
1 2
0 1

]

compute A−1, B−1, (BA)−1, and (AB)−1

3.5 The next 5 questions concern a particular linear system. Let

A =




0 2 4 −6
1 −2 4 3
2 2 −4 0




Compute the row-reduced form of A and AT . Clearly label the pivots for each case.

3.6 Write down basis vectors for the row and column spaces of A. What is the rank of
the matrix?

3.7 Write down basis vectors for the left and right null spaces of A.

3.8 What are the free variable(s) of the linear system Ar = b where

r =




w
x
y
z


 and b =




0
6
0


 .

Compute the particular solution of this system by setting the free variable(s) equal
to zero. Show for this system the general solution is equal to this particular solution
plus an element of the null space.

3.9 How many of the columns are linearly independent?

How many of the rows are linearly independent?

3.10 Let

A =

(
3/2 −5/2
−5/2 3/2

)

Compute the eigenvalues and eigenvectors of this matrix. Are the eigenvectors
orthogonal?

3.11 Let Q be the matrix of eigenvectors from the previous question and L be the
diagonal matrix of eigenvalues. Show by direct calculation that Q diagonalizes A,
i.e., QAQT = L.

3.12 Give an example of a real, nondiagonal 2×2 matrix whose eigenvalues are complex.
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3.13 In terms of its eigenvalues, what does it mean for a matrix to be invertible? Are
diagonalizable matrices always invertible?

3.14 Give specific (nonzero) examples of 2 by 2 matrices satisfying the following prop-
erties:

A2 = 0, A2 = −I2, and AB = −BA (3.14.5)

3.15 Let A be an upper triangular matrix. Suppose that all the diagonal elements are
nonzero. Show that the columns must be linearly independent and that the null-
space contains only the zero vector.

3.16 Figure out the column space and null space of the following two matrices:
[

1 −1
0 0

]
and

[
0 0 0
0 0 0

]
(3.14.6)

3.17 Which of the following two are subspaces of Rn: the plane of all vectors whose first
component is zero; the plane of all vectors whose first component is 1.

3.18 Let P be a plane in R3 defined by x1 − 6x2 + 13x3 = −3. What is the equation
of the plane P0 parallel to P but passing through the origin? Is either P or P0 a
subspace of R3?

3.19 Let

x =

[
9
−12

]
. (3.14.7)

Compute ‖x‖1, ‖x‖2, and ‖x‖∞.

3.20 Show that B = (ATA)−1AT is a left inverse and C = AT (AAT )−1 is a right inverse
of a matrix A, provided that AAT and ATA are invertible. It turns out that ATA
is invertible if the rank of A is equal to n, the number of columns; and AAT is
invertible if the rank is equal to m, the number of rows.

3.21 Consider the matrix [
a b
c d

]
(3.14.8)

The trace of this matrix is a + d and the determinant is ad − cb. Show by direct
calculation that the product of the eigenvalues is equal to the determinant and the
sum of the eigenvalues is equal to the trace.

3.22 As we have seen, an orthogonal matrix corresponds to a rotation. Consider the
eigenvalue problem for a simple orthogonal matrix such as

Q =

[
0 −1
1 0

]
(3.14.9)

How can a rotation map a vector into a multiple of itself?
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3.23 Show that the eigenvalues of Aj are the j-th powers of the eigenvalues of A.

3.24 Compute the SVD of the matrix

A =




1 1 0
0 0 1
0 0 −1


 (3.14.10)

directly by computing the eigenvectors of ATA and AAT .



Chapter 4

Fourier Analysis

4.1 Motivation

At the beginning of this course, we saw that superposition of functions in terms of sines
and cosines was extremely useful for solving problems involving linear systems. For
instance, when we studied the forced harmonic oscillator, we first solved the problem
by assuming the forcing function was a sinusoid (or complex exponential). This turned
out to be easy. We then argued that since the equations were linear this was enough to
let us build the solution for an arbitrary forcing function if only we could represent this
forcing function as a sum of sinusoids. Later, when we derived the continuum limit of
the coupled spring/mass system we saw that separation of variables led us to a solution,
but only if we could somehow represent general initial conditions as a sum of sinusoids.
The representation of arbitrary functions in terms of sines and cosines is called Fourier
analysis.

Jean Baptiste Joseph Fourier. Born: 21 March 1768 in Auxerre. Died:
16 May 1830 in Paris. Fourier trained as a priest and nearly lost his
head (literally) in the French revolution. He is best known for his
work on heat conduction. Fourier established the equation governing
diffusion and used infinite series of trigonometric functions to solve it.
Fourier was also a scientific adviser to Napoleon’s army in Egypt.
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4.2 The Fourier Series

So, the motivation for further study of such a Fourier superposition is clear. But there
are other important reasons as well. For instance, consider the data shown in Figure 4.1.

These are borehole tiltmeter measurements. A tiltmeter is a device that measures the
local tilt relative to the earth’s gravitational field. The range of tilts shown here is
between -40 and 40 nanoradians! (There are 2 π radians in 360 degrees, so this range
corresponds to about 8 millionths of a degree.) With this sensitivity, you would expect
that the dominant signal would be due to earth tides. So buried in the time-series on the
top you would expect to see two dominant frequencies, one that was diurnal (1 cycle per
day) and one that was semi-diurnal (2 cycles per day). If we somehow had an automatic
way of representing these data as a superposition of sinusoids of various frequencies, then
might we not expect these characteristic frequencies to manifest themselves in the size of
the coefficients of this superposition? The answer is yes, and this is one of the principle
aims of Fourier analysis. In fact, the power present in the data at each frequency is
called the power spectrum. Later we will see how to estimate the power spectrum using
a Fourier transform.

You’ll notice in the tiltmeter spectrum that the two peaks (diurnal and semi-diurnal
seem to be split; i.e., there are actually two peaks centered on 1 cycle/day and two
peaks centered on 2 cycles/day. Consider the superposition of two sinusoids of nearly
the same frequency:

sin((ω − ε)t) + sin((ω + ε)t).

Show that this is equal to
2 cos(εt) sin(ωt).

Interpret this result physically, keeping in mind that the way we’ve set the problem
up, ε is a small number compared to ω. It might help to make some plots. Once
you’ve figured out the interpretation of this last equation, do you see evidence of the
same effect in the tiltmeter data?

There is also a drift in the tiltmeter. Instead of the tides fluctuating about 0 tilt,
they slowly drift upwards over the course of 50 days. This is likely a drift in the
instrument and not associated with any tidal effect. Think of how you might correct
the data for this drift.

As another example Figure 4.2 shows 50 milliseconds of sound (a low C) made by a
soprano saxophone and recorded on a digital oscilloscope. Next to this is the estimated
power spectrum of the same sound. Notice that the peaks in the power occur at integer
multiples of the frequency of the first peak (the nominal frequency of a low C).
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Figure 4.1: Borehole tiltmeter measurements. Data courtesy of Dr. Judah Levine (see
[?] for more details). The plot on the top shows a 50 day time series of measurements.
The figure on the bottom shows the estimated power in the data at each frequency over
some range of frequencies. This is known as an estimate of the power spectrum of the
data. Later we will learn how to compute estimates of the power spectrum of time series
using the Fourier transform. Given what we know about the physics of tilt, we should
expect that the diurnal tide (once per day) should peak at 1 cycle per day, while the
semi-diurnal tide (twice per day) should peak at 2 cycles per day. This sort of analysis
is one of the central goals of Fourier theory.
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Figure 4.2: On the left is .05 seconds of someone playing low C on a soprano saxophone.
On the right is the power spectrum of these data. We’ll discuss later how this computation
is made, but essentially what you’re seeing the power as a function of frequency. The first
peak on the right occurs at the nominal frequency of low C. Notice that all the higher
peaks occur at integer multiples of the frequency of the first (fundamental) peak.

Definition of the Fourier Series

For a function periodic on the interval [−l, l], the Fourier series is defined to be:

f(x) =
a0

2
+
∞∑

n=1

an cos(nπx/l) + bn sin(nπx/l). (4.2.1)

or equivalently,

f(x) =
∞∑

n=−∞
cne

inπx/l. (4.2.2)

We will see shortly how to compute these coefficients. The connection between the real
and complex coefficients is:

ck =
1

2
(ak − ibk) c−k =

1

2
(ak + ibk). (4.2.3)

In particular notice that the sine/cosine series has only positive frequencies, while the
exponential series has both positive and negative. The reason is that in the former case
each frequency has two functions associated with it. If we introduce a single complex
function (the exponential) we avoid this by using negative frequencies. In other words,
any physical vibration always involves two frequencies, one positive and one negative.

Later on you will be given two of the basic convergence theorems for Fourier series. Now
let’s look at some examples.
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Figure 4.3: Absolute value function.

4.2.1 Examples

Let f(x) = abs(x), as shown in Figure 4.3. The first few terms of the Fourier series are:

1

2
− 4 cos(π x)

π2
− 4 cos(3 π x)

9 π2
− 4 cos(5 π x)

25 π2
(4.2.4)

This approximation is plotted in Figure 4.3.

Observations

Note well that the convergence is slowest at the origin, where the absolute value function
is not differentiable. (At the origin, the slope changes abruptly from -1 to +1. So the
left derivative and the right derivative both exist, but they are not the same.) Also, as
for any even function (i.e., f(x) = f(−x)) only the cosine terms of the Fourier series are
nonzero.

Suppose now we consider an odd function (i.e., f(x) = −f(−x)), such as f(x) = x. The
first four terms of the Fourier series are

2 sin(π x)

π
− sin(2 π x)

π
+

2 sin(3 π x)

3 π
− sin(4 π x)

2 π
(4.2.5)

Here you can see that only the sine terms appear, and no constant (zero-frequency) term.
A plot of this approximation is shown in Figure 4.4.

So why the odd behavior at the endpoints? It’s because we’ve assume the function is
periodic on the interval [−1, 1]. The periodic extension of f(x) = x must therefore have
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Figure 4.4: First four nonzero terms of the Fourier series of the function f(x) = abs(x).
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Figure 4.5: First four nonzero terms of the Fourier series of the function f(x) = x.
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Figure 4.6: Periodic extension of the function f(x) = x relative to the interval [0, 1].

a sort of sawtooth appearance. In other words any non-periodic function defined on a
finite interval can be used to generate a periodic function just by cloning the function
over and over again. Figure 4.6 shows the periodic extension of the function f(x) = x
relative to the interval [0, 1]. It’s a potentially confusing fact that the same function will
give rise to different periodic extensions on different intervals. What would the periodic
extension of f(x) = x look like relative to the interval [−.5, .5]?

4.3 Superposition and orthogonal projection

Now, recall that for any set of N linearly independent vectors xi in RN , we can represent
an arbitrary vector z in RN as a superposition

z = c1x1 + c2x2 + · · ·+ cNxN , (4.3.1)

which is equivalent to the linear system

z = X · c (4.3.2)

where X is the matrix whose columns are the xi vectors and c is the vector of unknown
expansion coefficients. As you well know, matrix equation has a unique solution c if and
only if the xi are linearly independent. But the solution is especially simple if the xi are
orthogonal. Suppose we are trying to find the coefficients of

z = c1q1 + c2q2 + · · ·+ qN , (4.3.3)

when qi · qj = δij . In this case we can find the coefficients easily by projecting onto the
orthogonal directions:

ci = qi · z, (4.3.4)
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or, in the more general case where the q vectors are orthogonal but not necessarily
normalized

ci =
qi · z
qi · qi

. (4.3.5)

We have emphasized throughout this course that functions are vectors too, they just
happen to live in an infinite dimensional vector space (for instance, the space of square
integrable functions). So it should come as no surprise that we would want to consider a
formula just like 4.3.3, but with functions instead of finite dimensional vectors; e.g.,

f(x) = c1q1(x) + c2q2(x) + · · ·+ cnqn(x) + · · · . (4.3.6)

In general, the sum will require an infinite number of coefficients ci, since a function has
an infinite amount of information. (Think of representing f(x) by its value at each point
x in some interval.) Equation 4.3.6 is nothing other than a Fourier series if the q(x)
happen to be sinusoids. Of course, you can easily think of functions for which all but a
finite number of the coefficients will be zero; for instance, the sum of a finite number of
sinusoids.

Now you know exactly what is coming. If the basis functions qi(x) are “orthogonal”, then
we should be able to compute the Fourier coefficients by simply projecting the function
f(x) onto each of the orthogonal “vectors” qi(x). So, let us define a dot (or inner) product
for functions on an interval [−l, l] (this could be an infinite interval)

(u, v) ≡
∫ l

−l
u(x)v(x)dx. (4.3.7)

Then we will say that two functions are orthogonal if their inner product is zero.

Now we simply need to show that the sines and cosines (or complex exponentials) are
orthogonal. Here is the theorem. Let φk(x) = sin(kπx/l) and ψk(x) = cos(kπx/l). Then

(φi, φj) = (ψi, ψj) = lδij (4.3.8)

(φi, ψj) = 0. (4.3.9)

The proof, which is left as an exercise, makes use of the addition formulae for sines and
cosines. (If you get stuck, the proof can be found in [2], Chapter 10.) A similar result
holds for the complex exponential, where we define the basis functions as ξk(x) = eikπx/l.

Using Equations 4.3.8 and 4.3.9 we can compute the Fourier coefficients by simply pro-
jecting f(x) onto each orthogonal basis vector:

an =
1

l

∫ l

−l
f(x) cos(nπx/l)dx =

1

l
(f, ψn), (4.3.10)

and

bn =
1

l

∫ l

−l
f(x) sin(nπx/l)dx =

1

l
(f, φn). (4.3.11)
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Or, in terms of complex exponentials

cn =
1

2l

∫ l

−l
f(x)e−inπx/ldx. (4.3.12)

4.4 The Fourier Integral

For a function defined on any finite interval, we can use the Fourier series, as above. For
functions that are periodic on some other interval than [−l, l] all we have to do to use
the above formulae is to make a linear change of variables so that in the new coordinate
the function is defined on [−l, l]. And for functions that are not periodic at all, but still
defined on a finite interval, we can fake the periodicity by replicating the function over
and over again. This is called periodic extension.

OK, so we have a function that is periodic on an interval [−l, l]. Looking at its Fourier
series (either Equation 4.2.1 or 4.2.2) we see straight away that the frequencies present
in the Fourier synthesis are

f1 =
1

2l
, f2 =

2

2l
, f3 =

3

2l
, · · · , fk =

k

2l
· · · (4.4.1)

Suppose we were to increase the range of the function to a larger interval [−L, L] trivially
by defining it to be zero on [−L,−l] and [l, L]. To keep the argument simple, let us
suppose that L = 2l. Then we notice two things straight away. First, the frequencies
appearing in the Fourier synthesis are now

f1 =
1

2L
, f2 =

2

2L
, f3 =

3

2L
, · · · , fk =

k

2L
· · · (4.4.2)

So the frequency interval is half what it was before. And secondly, we notice that half
of the Fourier coefficients are the same as before, with the new coefficients appearing
mid-way between the old ones. Imagine continuing this process indefinitely. The Fourier
coefficients become more and more densely distributed, until, in the limit that L → ∞,
the coefficient sequence cn becomes a continuous function. We call this function the
Fourier transform of f(x) and denote it by F (k). In this case, our Fourier series

f(x) =
∞∑

n=−∞
cne

inπx/l

becomes

f(x) =
1√
2π

∫ ∞

−∞
F (k)eikxdk (4.4.3)

with the “coefficient” function F (k) being determined, once again, by orthogonal projec-
tion:

F (k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx (4.4.4)
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Normalization

A function f(t) is related to its Fourier transform f(ω) via:

f(t) =
1√
2π

∫ ∞

−∞
F (ω)eiωt dω (4.4.5)

and

F (ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωt dt (4.4.6)

It doesn’t matter how we split up the 2π normalization. For example, in the interest
of symmetry we have defined both the forward and inverse transform with a 1/

√
2π out

front. Another common normalization is

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωt dω (4.4.7)

and
F (ω) =

∫ ∞

−∞
f(t)e−iωt dt. (4.4.8)

It doesn’t matter how we do this as long as we’re consistent. We could get rid of the
normalization altogether if we stop using circular frequencies ω in favor of f measured
in hertz or cycles per second. Then we have

g(t) =
∫ ∞

−∞
G(f)e2πift df (4.4.9)

and
G(f) =

∫ ∞

−∞
g(t)e−2πift dt (4.4.10)

Here, using time and frequency as variables, we are thinking in terms of time series, but
we could just as well use a distance coordinate such as x and a wavenumber k:

f(x) =
1

2π

∫ ∞

−∞
F (k)eikx dk (4.4.11)

with the inverse transformation being

F (k) =
∫ ∞

−∞
f(x)e−ikx dx. (4.4.12)

Invertibility: the Dirichlet Kernel

These transformations from time to frequency or space to wavenumber are invertible in
the sense that if we apply one after the other we recover the original function. To see
this plug Equation (4.4.12) into Equation (4.4.11):

f(x) =
1

2π

∫ ∞

−∞
dk
∫ ∞

−∞
f(x′)e−ik(x′−x) dx′. (4.4.13)
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If we define the kernel function K(x− x′, µ) such that

K(x′ − x, µ) =
1

2π

∫ µ

−µ
e−ik(x′−x) dk =

sinµ(x′ − x)

π(x′ − x)
(4.4.14)

then we have
f(x) =

∫ ∞

−∞
f(x′)K(x′ − x)dx′ (4.4.15)

where K(x′−x) is the limit (assuming that it exists) of K(x′−x, µ) as µ→∞. In order
for this to be true K(x′ − x) will have to turn out to be a Dirac delta function.

In one space dimension, the Dirac delta function is defined by the property that for
any interval I, f(x) =

∫
I f(y)δ(y − x)dy if x is in I and zero otherwise. (We can

also write this as f(0) =
∫
I f(y)δ(y)dy.) No ordinary function can have this property

since it implies that δ(y− x) must be zero except when x = y. If you try integrating
any function which is finite at only one point (and zero everywhere else), then you
always get zero. This means that

∫
I f(y)δ(y − x)dy would always be zero if δ(0) is

finite. So δ(0) must be infinite. And yet the function δ(x) itself must integrate to
1 since if we let f(x) = 1, then the basic property of the delta function says that:
1 =

∫
δ(y)dy. So we are forced to conclude that δ(x) has the strange properties that

it is zero, except when x = 0, it is infinite when x = 0 and that it integrates to 1.
This is no ordinary function.

The Dirac delta function is named after the Nobel prize-winning En-
glish physicist Paul A.M. Dirac (born August 1902, Bristol, England;
died October 1984, Tallahassee, Florida). Dirac was legendary for
making inspired physical predictions based on abstract arguments.
His book Principals of Quantum Mechanics was one of the most in-
fluential scientific books of the 20th century. He got the Nobel Prize
in Physics in 1933. Amazingly, Dirac had published 11 significant pa-
pers before his completed his PhD work. Along with Newton, Dirac
is buried in Westminster Abbey.

We won’t attempt to prove that the kernel function converges to a delta function and
hence that the Fourier transform is invertible; you can look it up in most books on
analysis. But Figure 4.7 provides graphical evidence. We show plots of this kernel
function for x = 0 and four different values of µ, 10, 100, 1000, and 10000. It seems pretty
clear that in the limit that µ→∞, the function K becomes a Dirac delta function.

4.4.1 Examples

Let’s start with an easy but interesting example. Suppose we want the compute the
Fourier transform of a box-shaped function. Let f(x) be equal to 1 for x in the interval
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Figure 4.7: The kernel sinµx/πx for µ = 10, 100, 1000, and 10000.

[−1, 1] and 0 otherwise. So we need to compute

∫ 1

−1
e−ikxdx =

2 sin k

k
.

This function is shown in Figure 4.8 and is just the Dirichlet kernel for µ = 1, centered
about the origin.1

Here is a result which is a special case of a more general theorem telling us how the
Fourier transform scales. Let f(x) = e−x

2/a2
. Here a is a parameter which corresponds

to the width of the bell-shaped curve. Make a plot of this curve. When a is small, the
curve is relatively sharply peaked. When a is large, the curve is broadly peaked. Now
compute the Fourier transform of f :

F (k) ∝
∫ ∞

−∞
e−x

2/a2

e−ikxdx.

The trick to doing integrals of this form is to complete the square on the exponentials.
You want to write the whole thing as an integral of the form

∫ ∞

−∞
e−z

2

dz.

As you’ll see shortly, this integral can be done analytically. The details will be left as an
exercise, here we will just focus on the essential feature, the exponential.

e−x
2/a2

e−ikx = e−1/a2[(x+ika2/2)2+(ka2/2)2].
1To evaluate the limit of this function at k = 0, use L’Hôpital’s rule.
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Figure 4.8: The Fourier transform of the box function.

So the integral reduces to

ae−k
2a2/4

∫ ∞

−∞
e−z

2

dz =
√
πae−k

2a2/4.

(The
√
π will come next.) So we see that in the Fourier domain the factor of a2 appears

in the numerator of the exponential, whereas in the original domain, it appeared in
the denominator. Thus, making the function more peaked in the space/time domain
makes the Fourier transform more broad; while making the function more broad in the
space/time domain, makes it more peaked in the Fourier domain. This is a very important
idea.

Now the trick to doing the Gaussian integral. Since

H =
∫ ∞

−∞
e−x

2

dx

H2 =
[∫ ∞

−∞
e−x

2

dx
] [∫ ∞

−∞
e−y

2

dy
]

=
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy.

Therefore

H2 =
∫ ∞

0

∫ 2π

0
e−r

2

r dr dθ =
1

2

∫ ∞

0

∫ 2π

0
e−ρ dρ dθ = π

So H =
√
π.

4.4.2 Some Basic Theorems for the Fourier Transform

It is very useful to be able think of the Fourier transform as an operator acting on
functions. Let us define an operator Φ via

Φ[f ] = F (4.4.16)
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where
F (ω) =

∫ ∞

−∞
f(t)e−iωt dt. (4.4.17)

Then it is easy to see that Φ is a linear operator

Φ[c1f1 + c2f2] = c1Φ[f1] + c2Φ[f2]. (4.4.18)

Next, if f (k) denotes the k-th derivative of f , then

Φ[f (k)] = (iω)kΦ[f ] k = 1, 2, . . . (4.4.19)

This result is crucial in using Fourier analysis to study differential equations. Next,
suppose c is a real constant, then

Φ[f(t− c)] = e−icwΦ[f ] (4.4.20)

and
Φ[eictf(t)] = F (t− c) (4.4.21)

where F = Φ(f). And finally, we have the convolution theorem. For any two functions
f(t) and g(t) with F = Φ(f) and G = Φ(g), we have

Φ(f)Φ(g) = Φ[f ∗ g] (4.4.22)

where “*” denotes convolution:

[f ∗ g](t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ. (4.4.23)

The convolution theorem is one of the most important in time series analysis. Convolu-
tions are done often and by going to the frequency domain we can take advantage of the
algorithmic improvements of the fast Fourier transform algorithm (FFT).

The proofs of all these but the last will be left as an exercise. The convolution theo-
rem is worth proving. Start by multiplying the two Fourier transforms. We will throw
caution to the wind and freely exchange the orders of integration. Also, let’s ignore the
normalization for the moment:

F (ω)G(ω) =
∫ ∞

−∞
f(t)e−iωtdt

∫ ∞

−∞
g(t′)e−iωt

′
dt′ (4.4.24)

=
∫ ∞

−∞

∫ ∞

−∞
e−iω(t+t′)f(t)g(t′)dt dt′ (4.4.25)

=
∫ ∞

−∞

∫ ∞

−∞
e−iωτf(t)g(τ − t)dt dτ (4.4.26)

=
∫ ∞

−∞
e−iωτ

[∫ ∞

−∞
f(t)g(τ − t)dt

]
dτ. (4.4.27)

This completes the proof, but now what about the normalization? If we put the symmet-
ric 1/

√
2π normalization in front of both transforms, we end up with a left-over factor of
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1/
√

2π because we started out with two Fourier transforms and we ended up with only
one and a convolution. On the other hand, if we had used an asymmetric normaliza-
tion, then the result would be different depending on whether we put the 1/(2π) on the
forward or inverse transform. This is a fundamental ambiguity since we can divide up
the normalization anyway we want as long as the net effect is 1/(2π). This probably the
best argument for using f instead of ω since then the 2πs are in the exponent and the
problem goes away.

4.5 The Sampling Theorem

Now returning to the Fourier transform, suppose the spectrum of our time series f(t) is
zero outside of some symmetric interval [−2πfs, 2πfs] about the origin.2 In other words,
the signal does not contain any frequencies higher than fs hertz. Such a function is said
to be band limited; it contains frequencies only in the band [−2πfs, 2πfs]. Clearly a band
limited function has a finite inverse Fourier transform

f(t) =
1

2π

∫ 2πfs

−2πfs
F (ω)e−iωt dω. (4.5.1)

sampling frequencies and periods

fs is called the sampling frequency. Hence the sampling period is Ts ≡ 1/fs. It is
sometimes convenient to normalize frequencies by the sampling frequency. Then the
maximum normalized frequency is 1:

f̂ =
ω̂

2π
= fTs = f/fs.

Since we are now dealing with a function on a finite interval we can represent it as a
Fourier series:

F (ω) =
∞∑

n=−∞
φne

iωn/2fs (4.5.2)

where the Fourier coefficients φn are to be determined by

φn =
1

4πfs

∫ 2πfs

−2πfs
F (ω)e−iωn/2fs dω. (4.5.3)

2In fact the assumption that the interval is symmetric about the origin is made without loss of
generality, since we can always introduce a change of variables which maps an arbitrary interval into a
symmetric one centered on 0.
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Comparing this result with our previous work we can see that

φn =
f(n/2fs)

2fs
(4.5.4)

where f(n/2fs) are the samples of the original continuous time series f(t). Putting all
this together, one can show that the band limited function f(t) is completely specified
by its values at the countable set of points spaced 1/2fs apart:

f(t) =
1

4πfs

∞∑

n=−∞
f(n/2fs)

∫ 2πfs

−2πfs
ei(ωn/2fs−ωt) dω

=
∞∑

n=−∞
f(n/2fs)

sin(π(2fst− n))

π(2fst− n)
. (4.5.5)

The last equation is known as the Sampling Theorem. Notice that the function sin x/x
appears here too. Since this function appears frequently it is given a special name, it is
called the sinc function:

sinc(x) =
sinx

x
.

And we know that the sinc function is also the Fourier transform of a box-shaped func-
tion. So the sampling theorem says take the value of the function, sampled every 1/2fs,
multiply it by a sinc function centered on that point, and then sum these up for all the
samples.

It is worth repeating for emphasis: any band limited function is completely determined
by its samples chosen 1/2fs apart, where fs is the maximum frequency contained in the
signal. This means that in particular, a time series of finite duration (i.e., any real time
series) is completely specified by a finite number of samples. It also means that in a
sense, the information content of a band limited signal is infinitely smaller than that of a
general continuous function. So if our band-limited signal f(t) has a maximum frequency
of fs hertz, and the length of the signal is T , then the total number of samples required
to describe f is 2fsT .

A sampling exercise

Consider the continuous sinusoidal signal:

x(t) = A cos(2πft+ φ)

Suppose we sample this signal at a sampling period of Ts. Let us denote the discrete
samples of the signal with square brackets:

x[n] ≡ x(nTs) = A cos(2πfnTs + φ).
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Now consider a different sinusoid of the same amplitude and phase, but sampled at a
frequency of f + `fs, where ` is an integer and fs = 1/Ts. Let the samples of this second
sinusoid be denoted by y[n]. Show that x[n] = y[n]. This is an example of aliasing.
These two sinusoids have exactly the same samples, so the frequency of one appears to
be the same.

The sampling theorem is due to Harry Nyquist, a researcher at Bell Labs in New
Jersey. In a 1928 paper Nyquist laid the foundations for the sampling of continuous
signals and set forth the sampling theorem. Nyquist was born on February 7, 1889
in Nilsby, Sweden and emigrated to the US in 1907. He got his PhD in Physics from
Yale in 1917. Much of Nyquist’s work in the 1920’s was inspired by the telegraph.
In addition to his work in sampling, Nyquist also made an important theoretical
analysis of thermal noise in electrical systems. In fact this sort of noise is sometimes
called Nyquist noise. Nyquist died on April 4, 1976 in Harlingen, Texas.

A generation after Nyquist’s pioneering work Claude Shannon, also
at Bell Labs, laid the broad foundations of modern communication
theory and signal processing. Shannon (Born: April 1916 in Gaylord,
Michigan; Died: Feb 2001 in Medford, Massachusetts) was the founder
of modern information theory. After beginning his studies in electrical
engineering, Shannon took his PhD in mathematics from MIT in 1940.
Shannon’s A Mathematical Theory of Communication published in

1948 in the Bell System Technical Journal, is one of the profoundly influential scientific
works of the 20th century. In it he introduced many ideas that became the basis for
electronic communication, such as breaking down information into sequences of 0’s
and 1’s (this is where the term bit first appeared), adding extra bits to automatically
correct for errors and measuring the information or variability of signals. Shannon’s
paper and many other influential papers on communication are compiled in the book
Key papers in the development of information theory [?].

4.5.1 Aliasing

As we have seen, if a time-dependent function contains frequencies up to fs hertz, then
discrete samples taken at an interval of 1/2fs seconds completely determine the signal.
Looked at from another point of view, for any sampling interval ∆, there is a special
frequency (called the Nyquist frequency), given by fs = 1

2∆
. The extrema (peaks and

troughs) of a sinusoid of frequency fs will lie exactly 1/2fs apart. This is equivalent to
saying that critical sampling of a sine wave is 2 samples per wavelength.

We can sample at a finer interval without introducing any error; the samples will be
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Figure 4.9: A sinusoid sampled at less than the Nyquist frequency gives rise to spurious
periodicities.

redundant, of course. However, if we sample at a coarser interval a very serious kind
of error is introduced called aliasing. Figure 4.9 shows a cosine function sampled at an
interval longer than 1/2fs; this sampling produces an apparent frequency of 1/3 the true
frequency. This means that any frequency component in the signal lying outside the
interval (−fs, fs) will be spuriously shifted into this interval. Aliasing is produced by
under-sampling the data: once that happens there is little that can be done to correct
the problem. The way to prevent aliasing is to know the true band-width of the signal
(or band-limit the signal by analog filtering) and then sample appropriately so as to give
at least 2 samples per cycle at the highest frequency present.

4.6 The Discrete Fourier Transform

Now we consider the third major use of the Fourier superposition. Suppose we have
discrete data, not a continuous function. In particular, suppose we have data fk recorded
at locations xk. To keep life simple, let us suppose that the data are recorded at N
evenly spaced locations xk = 2πk/N , k = 0, 1, . . .N − 1. Think of fk as being samples
of an unknown function, which we want to approximate. Now we write down a Fourier
approximation for the unknown function (i.e., a Fourier series with coefficients to be
determined):

p(x) =
N−1∑

n=0

cne
inx. (4.6.1)
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Now we will compute the coefficients in such a way that p interpolates (i.e., fits exactly)
the data at each xk:

fk = p(xk) =
N−1∑

n=0

cne
in2πk/N . (4.6.2)

In theory we could do this for any linearly independent set of basis functions by solving
a linear system of equations for the coefficients. But since sines/cosines are orthogonal,
the cn coefficients can be computed directly:

ck =
1

N

N−1∑

n=0

fne
−in2πk/N . (4.6.3)

This is the discrete version of the Fourier transform (DFT). fn are the data and ck are
the harmonic coefficients of a trigonometric function that interpolates the data. Now, of
course, there are many ways to interpolate data, but it is a theorem that the only way
to interpolate with powers of ei2πx is Equation 4.6.3.

Optional Exercise In the handout you will see some Mathematica code for computing
and displaying discrete Fourier transforms. Implement the previous formula and compare
the results with Mathematica’s built in Fourier function. You should get the same
result, but it will take dramatically longer than Mathematica would for 100 data points.
The reason is that Mathematica uses a special algorithm called the FFT (Fast Fourier
Transform). See Strang for an extremely clear derivation of the FFT algorithm.

4.7 The Linear Algebra of the DFT

Take a close look at Equation 4.6.3. Think of the DFT coefficients ck and the data points
fn as being elements of vectors c and f . There are N coefficients and N data so both
c and f are elements of RN . The summation in the Fourier interpolation is therefore a
matrix-vector inner product. Let’s identify the coefficients of the matrix. Define a matrix
Q such that

Qnk = ein2πk/N . (4.7.1)

N is fixed, that’s just the number of data points. The matrix appearing in Equation
4.6.3 is the complex conjugate of Q; i.e., Q∗. We can write Equation 4.6.2 as

f = Q · c. (4.7.2)

The matrix Q is almost orthogonal. We have said that a matrix A is orthogonal if
AAT = ATA = I, where I is the N -dimensional identity matrix. For complex matrices
we need to generalize this definition slightly; for complex matrices we will say that A is
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orthogonal if (AT )∗A = A(AT )∗ = I.3 In our case, since Q is obviously symmetric, we
have:

Q∗Q = QQ∗ = I. (4.7.3)

Once again, orthogonality saves us from having to solve a linear system of equations:
since Q∗ = Q−1, we have

c = Q∗ · f . (4.7.4)

Now you may well ask: what happens if we use fewer Fourier coefficients than we have
data? That corresponds to having fewer unknowns (the coefficients) than data. So you
wouldn’t expect there to be an exact solution as we found with the DFT, but how about
a least squares solution? Let’s try getting an approximation function of the form

p(x) =
m∑

n=0

cne
inx (4.7.5)

where now we sum only up to m < N − 1. Our N equations in m unknowns is now:

fk =
m∑

n=0

cne
in2πk/N . (4.7.6)

So to minimize the mean square error we set the derivative of

||f −Q · c||2 (4.7.7)

with respect to an arbitrary coefficient, say cj, equal to zero. But this is just an ordinary
least squares problem.

4.8 The DFT from the Fourier Integral

In this section we will use the f (cycles per second) notation rather than the ω (radians
per second), because there are slightly fewer factors of 2π floating around. You should
be comfortable with both styles, but mind those 2πs! Also, up to now, we have avoided
any special notation for the Fourier transform of a function, simply observing whether
it was a function of space-time or wavenumber-frequency. Now that we are considering
discrete transforms and real data, we need to make this distinction since we will generally
have both the sampled data and its transform stored in arrays on the computer. So for
this section we will follow the convention that if h = h(t) then H = H(f) is its Fourier
transform.

3Technically such a matrix is called Hermitian or self-adjoint–the operation of taking the complex
conjugate transpose being known at the adjoint–but we needn’t bother with this distinction here.
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We suppose that our data are samples of a function and that the samples are taken at
equal intervals, so that we can write

hk ≡ h(tk), tk ≡ k∆, k = 0, 1, 2, . . . , N − 1, (4.8.1)

where N is an even number. In our case, the underlying function h(t) is unknown; all
we have are the digitally recorded time series. But in either case we can estimate the
Fourier transform H(f) at at most N discrete points chosen in the range −fs to fs where
fs is the Nyquist frequency:4

fn ≡
n

∆N
, n =

−N
2
, . . . ,

N

2
. (4.8.2)

The two extreme values of frequency f−N/2 and f−N/2 are not independent (f−N/2 =
−fN/2), so there are actually only N independent frequencies specified above.

A sensible numerical approximation for the Fourier transform integral is thus:

H(fn) =
∫ ∞

−∞
h(t)e−2πifnt dt ≈

N−1∑

k=0

hke
−2πifntk∆. (4.8.3)

Therefore

H(fn) ≈ ∆
N−1∑

k=0

hke
−2πikn/N . (4.8.4)

Defining the Discrete Fourier Transform (DFT) by

Hn =
N−1∑

k=0

hke
−2πikn/N (4.8.5)

we then have

H(fn) ≈ ∆Hn (4.8.6)

where fn are given by Equation (4.8.2).

Now, the numbering convention implied by Equation (4.8.2) has± Nyquist at the extreme
ends of the range and zero frequency in the middle. However it is clear that the DFT is
periodic with period N :

H−n = HN−n. (4.8.7)

As a result, it is standard practice to let the index n in Hn vary from 0 to N − 1,
with n and k varying over the same range. In this convention 0 frequency occurs at

4The highest frequency fs in the Fourier representation of a time series sampled at a time interval
of ∆ is 1

2∆ . This maximum frequency is called the Nyquist frequency. You’ll study this in detail in the
digital course.
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n = 0; positive frequencies from from 1 ≤ n ≤ N/2 − 1; negative frequencies run from
N/2 + 1 ≤ n ≤ N − 1. Nyquist sits in the middle at n = N/2. The inverse transform is:

hk =
1

N

N−1∑

n=0

Hne
2πikn/N (4.8.8)

Mathematica, on the other hand, uses different conventions. It uses the symmetric nor-
malization (1/

√
N in front of both the forward and inverse transform), and defines arrays

running from 1 to N in Fortran fashion. So in Mathematica, the forward and inverse
transforms are, respectively:

Hn =
1√
N

N∑

k=1

hke
−2πi(k−1)(n−1)/N (4.8.9)

and

hk =
1√
N

N∑

n=1

Hne
2πi(k−1)(n−1)/N . (4.8.10)

If you are using canned software, make sure you know what conventions are
being used.

4.8.1 Discrete Fourier Transform Examples

Here we show a few examples of the use of the DFT. What we will do is construct an
unknown time series’ DFT by hand and inverse transform to see what the resulting time
series looks like. In all cases the time series hk is 64 samples long. Figures 4.10 and
4.11 show the real (left) and imaginary (right) parts of six time series that resulted from
inverse DFT’ing an array Hn which was zero except at a single point (i.e., it’s a Kronecker
delta: Hi = δi,j = 1 if i = j and zero otherwise; here a different j is chosen for each
plot). Starting from the top and working down, we choose j to be the following samples:
the first, the second, Nyquist-1, Nyquist, Nyquist+1, the last. We can see that the first
sample in frequency domain is associated with the zero-frequency or DC component of a
signal and that the frequency increases until we reach Nyquist, which is in the middle of
the array. Next, in Figure 4.12, we show at the top an input time series consisting of a
pure sinusoid (left) and the real part of its DFT. Next we add some random noise to this
signal. On the left in the middle plot is the real part of the noisy signals DFT. Finally,
at the bottom, we show a Gaussian which we convolve with the noisy signal in order to
attenuate the frequency components in the signal. The real part of the inverse DFT of
this convolved signal is shown in the lower right plot.
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Figure 4.10: The real (left) and imaginary (right) parts of three length 64 time series,
each associated with a Kronecker delta frequency spectrum. These time series are recon-
structed from the spectra by inverse DFT. At the top the input spectrum is δi,0, in the
middle δi,1, and at the bottom, δi,64/2−1.

4.9 Convergence Theorems

One has to be a little careful about saying that a particular function is equal to its
Fourier series since there exist piecewise continuous functions whose Fourier series diverge
everywhere! However, here are two basic results about the convergence of such series.

Point-wise Convergence Theorem: If f is piecewise continuous and has left and right
derivatives at a point c5 then the Fourier series for f converges converges to

1

2
(f(c−) + f(c+)) (4.9.1)

where the + and - denote the limits when approached from greater than or less than c.

Another basic result is the Uniform Convergence Theorem: If f is continuous with
period 2π and f ′ is piecewise continuous, then the Fourier series for f converges uniformly
to f . For more details, consult a book on analysis such as The Elements of Real Analysis
by Bartle [1] or Real Analysis by Haaser and Sullivan [?].

5A right derivative would be: limt→0(f(c+ t)− f(c))/t, t > 0. Similarly for a left derivative.
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Figure 4.11: The real (left) and imaginary (right) parts of three time series of length
64, each associated with a Kronecker delta frequency spectrum. These time series are
reconstructed from the spectra by inverse DFT. At the top the input spectrum is δi,64/2,
in the middle δi,64/2+1, and at the bottom δi,64.
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Figure 4.12: The top left plot shows an input time series consisting of a single sinusoid.
In the top right we see the real part of its DFT. Note well the wrap-around at negative
frequencies. In the middle we show the same input sinusoid contaminated with some
uniformly distributed pseudo-random noise and its DFT. At the bottom left, we show a
Gaussian time series that we will use to smooth the noisy time series by convolving it
with the DFT of the noisy signal. When we inverse DFT to get back into the “time”
domain we get the smoothed signal shown in the lower right.
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4.10 Basic Properties of Delta Functions

Another representation of the delta function is in terms of Gaussian functions:

δ(x) = lim
µ→∞

µ√
π
e−µ

2x2

. (4.10.1)

You can verify for yourself that the area under any of the Gaussian curves associated
with finite µ is one.

The spectrum of a delta function is completely flat since

∫ ∞

−∞
e−ikxδ(x) dx = 1. (4.10.2)

For delta functions in higher dimensions we need to add an extra 1/2π normalization for
each dimension. Thus

δ(x, y, z) =
(

1

2π

)3 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ei(kxx+kyy+kzz) dkx dky dkz. (4.10.3)

The other main properties of delta functions are the following:

δ(x) = δ(−x) (4.10.4)

δ(ax) =
1

|a|δ(x) (4.10.5)

xδ(x) = 0 (4.10.6)

f(x)δ(x− a) = f(a)δ(x− a) (4.10.7)∫
δ(x− y)δ(y − a) dy = δ(x− a) (4.10.8)

∫ ∞

−∞
δ(m)f(x) dx = (−1)mf (m)(0) (4.10.9)

∫
δ′(x− y)δ(y − a) dy = δ′(x− a) (4.10.10)

xδ′(x) = −δ(x) (4.10.11)

δ(x) =
1

2π

∫ ∞

−∞
eikx dk (4.10.12)

δ′(x) =
i

2π

∫ ∞

−∞
keikx dk (4.10.13)

Exercises

4.1 Prove Equations 4.2.4 and 4.2.5.
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4.2 Compute the Fourier transform of the following function. f(x) is equal to 0 for
x < 0, x for 0 ≤ x ≤ 1 and 0 for x > 1.

4.3 Prove Equations 4.4.18, 4.4.19, 4.4.20, 4.4.22.

4.4 Compute the Fourier transform of f(x) = e−x
2/a2

. If a is small, this bell-shaped
curve is sharply peaked about the origin. If a is large, it is broad. What can you
say about the Fourier transform of f in these two cases?

4.5 Let f(x) be the function which is equal to -1 for x < 0 and +1 for x > 0. Assuming
that

f(x) =
a0

2
+
∞∑

k=1

ak cos(kπx/l) +
∞∑

k=1

bk sin(kπx/l),

compute a0, a1, a2, b1 and b2 by hand, taking the interval of periodicity to be
[−1, 1].

4.6 For an odd function, only the sine or cosine terms appear in the Fourier series.
Which is it?

4.7 Consider the complex exponential form of the Fourier series of a real function

f(x) =
∞∑

n=−∞
cne

inπx/l.

Take the complex conjugate of both sides. Then use the fact that since f is real, it
equals its complex conjugate. What does this tell you about the coefficients cn?

.
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Chapter 5

Linear Systems

This chapter is under construction. The goal is to build a bridge to the material covered
in GP 404. This will involve basic ideas of FIR filters, the frequency response of a filter,
impulse responses, and z-transforms.

Can you hear the shape of a bell?

–Marc Kaz

When you strike a bell with a hammer it rings. The result of impulsively exciting
a system, such as striking a bell with a hammer, is called the impulse response. In
this chapter one of the key ideas we will study is how to characterize systems from
measurements of their impulse responses, sort of hearing the shape of the bell. It is
useful to have the a mental picture of the bell as a black box. Into the left side of the
black box we put the input signal–in this case the hammer strike. The system acts on
the input and produces an output–the ringing sound. This is illustrated in Figure 5.1.
Of course the system need not be linear: if we strike the hammer hard enough we might
dent or even crack the bell. But for now we will limit the discussions to linear systems.

The way to represent an impulsive function mathematically is with a Dirac delta. So
the official definition of the impulse response of a system is the result of applying a
delta function excitation. Now in practice we cannot actually measure the true impulse
response since it is impossible to have a true delta function in nature–they’re infinite
after all. But we can come pretty close.

Figure 5.2 show an example of such an measurement. An impulsive voltage is applied to
an ultrasonic transducer–a sort of high-frequency microphone. The transducer converts
voltages into force, so the force generated by the transducer would be appoximately
impulsive. The transducer was coupled to a rock sample. So the rock is our linear
system, the impulsive force generated by the transducer is the input to the system and

133
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linear system

outputinput

Figure 5.1: For a linear system with one input channel and one ouput channel, the
impulse response is the output associated with an impulsive excitation of the system.
Theoretically the excitation should be a delta function, but in practice we approximate
this as best we can. It is possible to excite the system and measure its response at many
different spatial locations, then the impulse response becomes a function of both the
source and detector coordinates. In this case we call it a Green function.
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Figure 5.2: Ultrasonic impulse response measured in a cylindrical core of sandstone. An
impulsive voltage is applied to a piezoelectric transducer and the response is measured
with the same transducer.

Figure 5.2 shows the signal measured by the same transducer for a period of 300 µs
after the excitation. What you’re seening is the ringing of the rock sample to which
the impulsive force was applied. The time-series associated with a bell would look very
similar.

You can probably think of lots of examples of impulse response measurements. We could
also set off an exposive charge in the soil; this would generate an impulsive stress wave
in the earth. We could strike an object with a hammer, as is done in near-surface seismic
exploration. In laboratory acoustics it is common to break capilary tubes or pencil lead
on surfaces to create impulsive acoustic sources. Active sonar is a pulse-echo technique:
set of an audible ping and record the echo.

One detail we’ve ignored up to this point is the spatial dependence of the input and
output functions. For a spatially extended system, the force could be applied or the
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response measured at any point, or over a region or volume of points. So for these sorts
of systems, where the input and output can are functions of space, the impulse responce is
actually a function of both the source and detector coordinates. In this case it is usually
called a Green function. We would have to write it as something like the following:
g(r, t; r′, t′). This is complicated but just keep in mind that the two sets of coordinates,
space and time, are associated with the location of the source and the location of the
detector.

In Chapter 4, the Dirac delta function appeared somewhat mysteriously from our desire to
see if the Fourier transformation was invertible. However, there is a much more intuitive
explanation for the importance of this unusual function. Suppose we have a physical
system that produces some output u(t) when a input f(t) is applied. For example u
could be the acoustic pressure and f could be a force. In this particular case we know
that the ouput (pressure) is related to the input (force) via the wave equation:

∇2u(t)− 1

c2

∂2u(t)

∂t2
= f(t). (5.0.1)

Now, u actually depends on spatial coordinates as well as time (e.g., u(r, t)), but for now
let’s not explicitly show these. The left-hand side of this equation can be thought of as
an operator acting on the unknown output u. Let’s call this operator L, for linear:

L(u) = f(t). (5.0.2)

OK, at this point the forcing funtion f could be anything. But we have already seen that
because of the linearity of L, if we can solve Equation 5.0.2 when f(t) = eiωt, then we
can use Fourier synthesis to build the solution for an arbitrary forcing function. There
is another special kind of forcing function that will work in much the same way. If we
make the forcing function impulsive (i.e., we ping the sysem), then provided we can solve
Equation 5.0.2, we can solve it for any f . Since our mathematical model of an impulsive
force is a Dirac delta function, the claim is that if we can solve:

L(g) = δ(t) (5.0.3)

then we can use this solution to solve Equation 5.0.2 for any right-hand side. Now, I’m
not trying to pull any tricks by using g instead of u here. The symbols g or u are just
labels. The interpretation of these functions depends on the structure of L. If L is the
wave equation operator then the solutions of Equation 5.0.2 are waves excited by the
right-hand; we can call the solution whatever we want. But since we are claiming that
the solution for a delta function force is special, it helps to have a special symbol for the
solution in this case. So g is the response of our system to an impulsive force: this is
why it is known as the impulse response.

So g(t) will denote the solution of Equation 5.0.2 for a delta function right-hand side.
Now I have to show you that this is useful. Let us summarize the situation as follows:

L(u(t)) = f(t)

L(g(t)) = δ(t). (5.0.4)
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Now suppose we convolve the force f with the impulse response. Let

h ≡ f ? g.

I claim that h is what we’re after, namely a solution to the general problem Equation
5.0.2. The proof is easy, but subtle; all we have to do is operate on h with L and we
must end up with f .

L[h(t)] = L
[∫

f(t− τ)g(τ)dτ
]
. (5.0.5)

Here is the trick. I know what happens when I apply L to g; I get a delta function. But
on the left side of this equation L is operating on a function of t. So it must do this on
the right side too. τ is just the dummy integration variable. So if I change variables of
integration I can switch the t dependence to g:

L [h(t)] = L
[∫ ∞

−∞
f(t− τ)g(τ)

]
dτ (5.0.6)

= L
[∫ ∞

−∞
f(t′)g(t− t′)dt′

]
(5.0.7)

=
∫ ∞

−∞
f(t′)L [g(t− t′)] dt′ (5.0.8)

=
∫ ∞

−∞
f(t′)δ(t− t′)dt′ (5.0.9)

= f(t). (5.0.10)

Going from the first equation to the second is just a change of variables. Going from the
second to the third depends on our understanding that L is operating only on functions
of t. Going from the third to the fourth equation is simply using the fact that since
g is the impulse response of the sytem, L acting on g must produce a delta function.
Finally we use the basic property of the delta function and end up with the statement
that L[h(t)] = f(t). This means that h is a solution to our basic Equation 5.0.2, which
is what we set out to prove. So if we know the impulse reponse of any linear system (not
just for the wave equation), we can obtain the solution for an arbitrary forcing function
by simply convolving the forcing function with the impulse response.
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