With your groupmates, discuss and answer the following, and <u>write</u> <u>down your answer</u>.

What is an asymptotic potential, and what do we use it to calculate?

Which of the following is *not* true in the asymptotic regime?

A.
$$|\vec{x} - \vec{x}'| \approx |\vec{x}| \equiv r$$

B. $t' \approx t$ 35
C. $t' \approx t - \frac{r}{c}$ 6
D. $\frac{\partial t'}{\partial t} \approx 1$ 2
E. $\frac{\partial x'}{\partial t} \ll c$

We use the Lorenz gauge condition $\nabla \cdot \vec{A} = -\mu_0 \varepsilon_0 \frac{\partial v}{\partial t}$ and the asymptotic potential \vec{A} to get the asymptotic version of V.

But using that gauge condition doesn't get *all* of V; it just gets the part of V that has nonzero time derivative (which, in practice, is the time-dependent part of V).

I claim this is not a bad thing in this context, that only the time dependent part of V matters. Talk to your group and justify this claim.