PHGN 462 Homework 10

1) When I teach 361 I try to really hammer home the point that special functions aren’t all that
special. At least, they don’t need to be scary. I think I said something like “Even Bessel functions

aren’t too bad as long as you stay calm and look up their properties.”

Anyway, let’s think about a hollow conducting cylindrical waveguide of radius a (this is not the same
as the coaxial pair of cylindrical shells that we did/will do in class... just one cylinder). Let the axis

of the cylinder be in the k direction.

a)

b)

There are a lot of different ways to construct solutions to a new geometry. But easiest is to
take a look at the general problem that isn’t specific to any geometry. Section 14.3 in Pollack
and Stump (attached) does this, so read that up until eqn 14.74. That equation should look
pretty familiar, because we’ve done this before: We solved the general problem and then
made it a specific problem by applying rectangular boundary conditions. But this time we’re
going to apply cylindrical boundary conditions, so what I want you to do first is to solve
14.74 using separation of variables in cylindrical coordinates (technically polar since we’re in
2D).

If you start going after the above with separation of variables, you should end up with a fairly

2
trivial equation for ¢ and Bessel’s equation for yr, where y2? = (%) — k2. Don’t panic! Just

read about Bessel’s equation and the solutions to it (in any resource you prefer). We’re not
really going to have to do all that much with them. Put everything together and write down
the solution for y and then for the magnetic field. The solution should be indexed by some
integer; let’s call it m. Use a complex exponential for the ¢ equation instead of sines and
cosines. Also, don’t feel the need to write out the Bessel functions as power series (after all,
you never write sines, cosines, or exponentials as power series unless you have a pretty
specific need to).

Demonstrate how to find the parameter y corresponding to a particular mode m. With that,
you can complete the dispersion relation. Unless you’re very clever, you’ll probably at some
point have to say “And here’s where we can’t proceed analytically anymore, so numbers.”
And that’s fine. Sometimes that really is the answer.



2) The solutions to the differential equations for V and A in the Lorentz gauge (equations 15.5 and
15.6 in Pollack and Stump, or see lecture notes) are pretty clean as long as you evaluate the charge
and current densities at the retarded time t — 7/, . This represents the fact that influences from a
charge or current travel at some speed ¢ and take an amount of time 7'/, to reach some observation
point. None of this is super shocking to most people.

You know what is kind of shocking? The retarded potentials for V and A (equations 15.19 and 15.20
in Pollack and Stump, or notes) don’t only work with t — /.. They also work with t + 7'/, called
the advanced time. This is an example of the fact that most physical laws are invariant with respect to
time reversal — that is, for the most part, nature doesn’t care which direction time flows; physical laws
work just fine in either direction.

What I'd like you to do is to show that the advanced scalar potential, which looks like:
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102V p
VWV +—=—=—
c?at? g

And I mean for you to do it by direct substitution. Put the V shown into the differential equation
shown, do all the derivatives, and show that the equality holds. Don’t just repeat the retarded
potential derivation from lecture with the sign flipped. And don’t just put that equation into
Mathematica and have it say that the equality holds. Show me by hand. These derivatives show up a
lot in radiation problems, and some practice isn’t a bad idea.

Incidentally, the presence of these advanced potentials means that when I say that E&M is
intrinsically causal, as I sometimes do, I’'m slightly fibbing. It’s true that our solutions always require
some kind of time difference in between cause and effect — it’s just that they’re not super particular
about which one comes first.

3) Second peer lecture as described in class
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WAVE GUIDE OF ARBITRARY SHAPE

The rectangular wave guide is most common, but other shapes are possible. In
this section we analyze harmonic electromagnetic waves in a wave guide with an
arbitrary cross section. The wave guide is infinitely long in the 7 direction, and the
shape of the cross section is independent of z. The boundary surface is a cylinder
parallel to the z axis. A cross section of the interior region is bounded by a closed
curve C parallel to the xy plane. For simplicity we assume ideal conditions: The
exterior of the guide is a perfect conductor and the interior is vacuum. The basic
equations for the rectangular wave guide can be generalized to an arbitrary cross
section.

TE modes. The fields for a TE wave propagating in the +z direction may be
written in the form

E(x, 1) = =V x (29’ @) = — [V x (iy)] /0 (1472)
2
B(x, 1) = L1 [—Vw + iiw} e (14.73)
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where v/ (x, y) is a scalar function independent of z. These forms are the same
as (14.43) and (14.55) used in the analysis of the rectangular wave guide. All
four Maxwell equations are satisfied if ¥ (x, y) is a solution of the 2D Helmholtz
equation

V2 = —y2y (14.74)

with w?/c? = k? + y2.11 All that remains is to impose the boundary conditions.

The normal component of B must be 0 on C, the boundary curve of a cross
section of the guide. What is this condition in terms of ¥/ (x. v)? By (14.73) the
normal component of B at a point on the surface is proportional to n - Vi, where
1 is the unit normal vector at the point in the plane of C: thus

n-Vy =0 on C. (14.75)

The tangential components of E must also be 0 on C, but that requirement leads
to the same condition (14.75).

For the TE modes then, ¥ (x, y) obeys the 2D Helmholtz equation in the region
enclosed by C, with normal derivative O on the boundary. Equation (14.74) is an
eigenvalue problem, with operator V2 and eigenvalue —y 2. That is, ¥ (x, y) is the
eigenfunction of the 2D Laplacian with the Neumann boundary condition (14.75).
There are an infinite number of discrete eigenstates. If the angular frequency w of
the field oscillations is greater than cy then the solution describes a propagating
wave, because k is real in that case. But if w is less than cy then the solution

11gee Exercise 10.



