
PHGN 462 Homework 10 

 

1)  When I teach 361 I try to really hammer home the point that special functions aren’t all that 

special.  At least, they don’t need to be scary.  I think I said something like “Even Bessel functions 

aren’t too bad as long as you stay calm and look up their properties.” 

Anyway, let’s think about a hollow conducting cylindrical waveguide of radius a (this is not the same 

as the coaxial pair of cylindrical shells that we did/will do in class… just one cylinder).  Let the axis 

of the cylinder be in the �� direction. 

a) There are a lot of different ways to construct solutions to a new geometry.  But easiest is to 

take a look at the general problem that isn’t specific to any geometry.  Section 14.3 in Pollack 

and Stump (attached) does this, so read that up until eqn 14.74.  That equation should look 

pretty familiar, because we’ve done this before:  We solved the general problem and then 

made it a specific problem by applying rectangular boundary conditions.  But this time we’re 

going to apply cylindrical boundary conditions, so what I want you to do first is to solve 

14.74 using separation of variables in cylindrical coordinates (technically polar since we’re in 

2D). 

 

b) If you start going after the above with separation of variables, you should end up with a fairly 

trivial equation for φ and Bessel’s equation for γr, where �� = ���	
� − ��. Don’t panic!  Just 

read about Bessel’s equation and the solutions to it (in any resource you prefer).  We’re not 

really going to have to do all that much with them.  Put everything together and write down 

the solution for ψ and then for the magnetic field.  The solution should be indexed by some 

integer; let’s call it m.  Use a complex exponential for the φ equation instead of sines and 

cosines.  Also, don’t feel the need to write out the Bessel functions as power series (after all, 

you never write sines, cosines, or exponentials as power series unless you have a pretty 

specific need to). 

 

c) Demonstrate how to find the parameter γ corresponding to a particular mode m. With that, 

you can complete the dispersion relation.  Unless you’re very clever, you’ll probably at some 

point have to say “And here’s where we can’t proceed analytically anymore, so numbers.”  

And that’s fine.  Sometimes that really is the answer. 

 

  



2)  The solutions to the differential equations for V and A in the Lorentz gauge (equations 15.5 and 

15.6 in Pollack and Stump, or see lecture notes) are pretty clean as long as you evaluate the charge 

and current densities at the retarded time � − � ⁄  .  This represents the fact that influences from a 

charge or current travel at some speed c and take an amount of time � ⁄  to reach some observation 

point.  None of this is super shocking to most people. 

You know what is kind of shocking?  The retarded potentials for V and A (equations 15.19 and 15.20 

in Pollack and Stump, or notes) don’t only work with � − � ⁄ .  They also work with � + � ⁄ , called 

the advanced time.  This is an example of the fact that most physical laws are invariant with respect to 

time reversal – that is, for the most part, nature doesn’t care which direction time flows; physical laws 

work just fine in either direction. 

 

What I’d like you to do is to show that the advanced scalar potential, which looks like: 
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Satisfies the Lorenz-gauge differential equation for V: 
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And I mean for you to do it by direct substitution.  Put the V shown into the differential equation 

shown, do all the derivatives, and show that the equality holds.  Don’t just repeat the retarded 

potential derivation from lecture with the sign flipped.  And don’t just put that equation into 

Mathematica and have it say that the equality holds.  Show me by hand.  These derivatives show up a 

lot in radiation problems, and some practice isn’t a bad idea.   

Incidentally, the presence of these advanced potentials means that when I say that E&M is 

intrinsically causal, as I sometimes do, I’m slightly fibbing.  It’s true that our solutions always require 

some kind of time difference in between cause and effect – it’s just that they’re not super particular 

about which one comes first.   

 

 

3)  Second peer lecture as described in class 

 

 

 




