
Reading assignment

Schroeder, section 2.1.



Recap of lecture 3

• Work done by compression: W = −
∫ Vf

Vi

P (V ) dV .

• Jargon:
• Isothermal: At constant temperature.
• Isotherm: A curve with constant temperature.
• Adiabatic: Allowing no heat flow.
• Adiabat: A curve with no heat flow.
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Homework

HW Problem
Schroeder problem 1.39, p. 27.



Energy

Heat capacity

This is just the amount of heat needed to raise the temperature
by one degree (usually Celsius or Kelvin):

C =
Q

∆T
=

∆U −W

∆T
.

The tricky part is what to use for W . There are two common
conventions, corresponding to two common approaches to
determining the heat capacity.

If the volume is kept fixed, then no mechanical work is done,
and in the absence of any other kinds of work, the heat capacity
is just the heat capacity at constant volume:

CV =

(
∂U

∂T

)
V

.



Energy

Heat capacity

The simplicity of this derivative makes this heat capacity
convenient in theoretical calculations, where one would rather
not have to evaluate the contribution from the mechanical work.

On the other hand, in most cases it’s really difficult (and/or
dangerous!) to carry out experiments at constant volume. Most
are done while the system is exposed to atmospheric pressure,
which is unaffected by the experiment itself.

The relevant heat capacity in that case is the heat capacity at
constant pressure:

CP =

(
dU − (−P dV )

dT

)
P

=

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

.



Energy

Relating CP and CV

The good news is that it’s possible to relate these two
quantities through two measured properties of materials:

CP − CV = TV
β2

κT
,

where

β =
1

V

(
∂V

∂T

)
P

is the constant-pressure thermal-expansion coefficient, and

κT = − 1

V

(
∂V

∂P

)
T

is the isothermal compressibility.



Energy

Relating CP and CV in an ideal gas

To see the difference for the ideal gas, write its volume as

V =
NkT

P

and take the derivatives:

β =
1

V

Nk

P
=

Nk

PV
and κT = − 1

V

(
−NkT

P 2

)
=

NkT

P 2V
.

Combining the results, we get

CP − CV = TV
N2k2

P 2V 2

P 2V

NkT
= Nk (ideal gas) .



Energy

Lattice vibrations in a crystal

In a crystalline solid, all the atoms are locked in the crystal
lattice, so there are no translational or rotational degrees of
freedom, only vibrational degrees of freedom. The vibrations of
a lattice can be expressed in terms of the collective wavelike
normal modes, each of which behaves like a quantum oscillator.
The frequencies of these normal modes exhibit quite interesting
structure as a function of wavevector, shown here for Si:
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Energy

Low-T freeze-out of lattice vibrational modes

At low temperatures, most of the vibrational modes are frozen
out:

W L
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Thus, as T → 0, the heat capacity due to lattice vibrations (the
only significant contribution in an insulator) vanishes
completely.



Energy

Vibrational heat capacity in the high-T limit

At the opposite extreme, the frequencies are bounded from
above, so at sufficiently high temperature all modes participate
in energy exchanges with each other and the environment, and
the equipartion theorem applies for the energy

U =
6N

2
kT .

Thus, the heat capacity approaches

C =
dU

dT
= 3Nk

at high temperature.



Energy

Vibrational heat capacity vs T

The general behavior changes with T between these. At
intermediate temperatures, the heat capacity increases from 0
to 3Nk like this graph vs normalized temperature:
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Energy

Homework

HW Problem
Schroeder problem 1.45, p. 31.

HW Problem
Schroeder problem 1.46, p. 32.



Energy

Enthalpy

To build a system from scratch under constant (e.g.,
atmospheric) pressure, one must supply not just the energy
needed to create the system in vacuum, but also the mechanical
work needed to push out the surrounding material (e.g., air).
That is just ∫ V

0
P dV = PV .

Instead of keeping track of that as a separate term added on to
the energy, it is convenient to define a new thermodynamic
potential, called enthalpy, that has it built in:

H ≡ U + PV .



Energy

Enthalpy

The change in enthalpy is then, to first order,

dH = dU + P dV + V dP ,

in which the final term vanishes if the pressure is constant.

From that, we find:(
∂H

∂T

)
P

=

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

,

which just happens to be the constant-pressure heat capacity.

Thus:

CP =

(
∂H

∂T

)
P

is a simpler, more natural way to express CP .



Energy

Homework

HW Problem
Schroeder problem 1.50, pp. 35–36.
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