1. Define A as the average of the n numbers, $x_{1}, x_{2}, \ldots, x_{n}$. Prove that at least one of the x_{1}, \ldots, x_{n} is greater than or equal to A.
2. Prove that for every integer $x, x^{2}+x$ is even.
3. In class, we proved the Triangle Inequality,

$$
\text { For all } x, y \in \mathbb{R},|x+y| \leq|x|+|y|
$$

However, this may also be proved by using a number of cases. Prove the Triangle Inequality using cases.
4. Prove: If $T \subseteq A$, then $T \times B \subseteq A \times B$. (Problem 4.4.6)

