- 1. Define A as the average of the n numbers, x_1, x_2, \ldots, x_n . Prove that at least one of the x_1, \ldots, x_n is greater than or equal to A.
- 2. Prove that for every integer x, $x^2 + x$ is even.
- 3. In class, we proved the Triangle Inequality,

For all $x, y \in \mathbb{R}$, $|x + y| \le |x| + |y|$

However, this may also be proved by using a number of cases. Prove the Triangle Inequality using cases.

4. Prove: If $T \subseteq A$, then $T \times B \subseteq A \times B$. (Problem 4.4.6)