- 1. Show that the self-convolution of the function sinc(at/2) is the same function multiplied by a constant.
- 2. A "wavelet transform" is the Fourier transform of a function whose spectrum changes with time, and consists of a representation of the Fourier transform measured during an interval δt as a function of time. It is often used in speech and music analysis. With the help of the convolution theorem, show that δt and the frequency resolution $\delta \omega$ of the wavelet transform are related by $\delta t \cdot \delta \omega \approx 2\pi$.
- 3. Consider an LSI system with an impulse response $h(x) = \exp(-x)$ for x>0, and h(x) = 0 for x<0. The input pulse to the system is f(x) = rect(10x 0.5), where rect(x) = 1 for $|x| < \frac{1}{2}$, and 0 otherwise. Calculate and the output signal $g(x) = h(x) \otimes f(x)$ in several different ways. For each case, plot the outputs to make sure you get the same results in each case.
 - a. Analytically (without using Mathematica for symbolic manipulation), by doing the direct convolution integral.
 - b. Analytically, by using the convolution theorem: $g(x) = \Im^{-1} \{ F(k)H(k) \}$.
 - c. Analytically (in Mathematica). The impulse response function can be represented in Mathematica by Exp[-x]UnitStep[x]. The rect(x) function can be written as $UnitStep[\frac{1}{2}-x]UnitStep[\frac{1}{2}+x]$ or UnitBox[x]. Use Integrate[] to do the calculation.
 - d. Numerically, using ListConvolve[]. You'll have to read the help notes to understand how it works. Note that the output list is normally shorter than the input lists, unless you pad the ends with zeroes.
- 4. Spectral interferogram. Spectral interferometry does not require coherent light. Show that if the input spectrum is $E(\omega) = A(\omega) \exp[i\phi_r(\omega)]$, where $\phi_r(\omega)$ is a random spectral phase, there is still an interferogram when the spectral intensity of this field plus a time-shifted copy is measured.
- 5. Spectral interferometry can be used to characterize nonlinear changes to a pulse. These often change the spectral bandwidth.
 - a. Calculate a general expression for the spectral interferogram of two Gaussian pulses with amplitudes A_1 and A_2 and pulse durations t_1 and t_2 . The carrier frequency for both pulses is ω_0 and the time delay between the pulses is τ . Starting from the time domain calculate the spectral intensity. If you use Mathematica to perform the transforms and calculations, write the final result in a simplified form.

To make plots, assume the central wavelength is $\lambda_0 = 600$ nm and the duration of the first pulse is $t_1 = 100$ fs. Plot the spectral interferogram (vs ω measured in rad/fs) for the following cases:

b. $t_2 = 100$ fs. Set $A_1 = A_2$ so that each spectrum is normalized to 1. Choose the time delay to get approximately 10 fringes across the spectral width.

- c. Same parameters as (b), but pick a2 so that the energy of pulse 2 is only 1% of that of pulse 1.
- d. Return to $A_1 = A_2$, but now let $t_2 = t_1/\text{sqrt}[3]$.
- e. Return to the conditions of (b), but multiply the second spectral field by the quadratic phase factor $\exp\left[i\phi_2\left(\omega-\omega_0\right)^2\right]$, where ϕ_2 is a constant with the value $\phi_2=3\times10^4\,fs^2$.