5-3. In order to remove a particle from the surface of the Earth and transport it infinitely far away, the initial kinetic energy must equal the work required to move the particle from $r=R_{e}$ to $r=\infty$ against the attractive gravitational force:

$$
\begin{equation*}
\int_{R_{e}}^{\infty} G \frac{M_{e} m}{r^{2}} d r=\frac{1}{2} m v_{0}^{2} \tag{1}
\end{equation*}
$$

where M_{e} and R_{e} are the mass and the radius of the Earth, respectively, and v_{0} is the initial velocity of the particle at $r=R_{e}$.

Solving (1), we have the expression for v_{0} :

$$
\begin{equation*}
v_{0}=\sqrt{\frac{2 G M_{e}}{R_{e}}} \tag{2}
\end{equation*}
$$

Substituting $G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}, M_{e}=5.98 \times 10^{24} \mathrm{~kg}, R_{e}=6.38 \times 10^{6} \mathrm{~m}$, we have

$$
\begin{equation*}
v_{0} \cong 11.2 \mathrm{~km} / \mathrm{sec} \tag{3}
\end{equation*}
$$

5-7.

The contribution to the potential at P from a small line element is

$$
\begin{equation*}
d \Phi=-G \frac{\rho_{\ell}}{s} d x \tag{1}
\end{equation*}
$$

where $\rho_{\ell}=\frac{M}{\ell}$ is the linear mass density. Integrating over the whole rod, we find the potential

$$
\begin{equation*}
\Phi=-G \frac{M}{\ell} \int_{-\ell / 2}^{\ell / 2} \frac{1}{\sqrt{x^{2}+R^{2}}} d x \tag{2}
\end{equation*}
$$

Using Eq. (E.6), Appendix E, we have

$$
\begin{gather*}
\Phi=-G \frac{M}{\ell} \ln \left[x+\sqrt{x^{2}+R^{2}}\right]_{-\ell / 2}^{\ell / 2}=-\frac{G M}{\ell} \ln \left[\frac{\frac{\ell}{2}+\sqrt{\frac{\ell^{2}}{4}+R^{2}}}{-\frac{\ell}{2}+\sqrt{\frac{\ell^{2}}{4}+R^{2}}}\right] \\
\Phi=-\frac{G M}{\ell} \ln \left[\frac{\sqrt{\ell^{2}+4 R^{2}}+\ell}{\sqrt{\ell^{2}+4 R^{2}}-\ell}\right] \tag{3}
\end{gather*}
$$

5-10.

Using the relations

$$
\begin{gather*}
x=\sqrt{(R \sin \theta)^{2}+a^{2}-2 a R \sin \theta \cos \phi} \tag{1}\\
r=\sqrt{x^{2}+R^{2} \cos ^{2} \theta}=\sqrt{R^{2}+a^{2}-2 a R \sin \theta \cos \phi} \tag{2}\\
\rho_{\ell}=\frac{M}{2 \pi a} \text { (the linear mass density), } \tag{3}
\end{gather*}
$$

the potential is expressed by

$$
\begin{equation*}
\Phi=-G \int \frac{\rho_{\ell} d \ell}{r}=\frac{-G M}{2 \pi R} \int_{0}^{2 \pi} \frac{d \phi}{\sqrt{1-\left[2 \frac{a}{R} \sin \theta \cos \phi-\frac{a^{2}}{R^{2}}\right]}} \tag{4}
\end{equation*}
$$

If we expand the integrand and neglect terms of order $(a / R)^{3}$ and higher, we have

$$
\begin{equation*}
\left[1-\left[2 \frac{a}{R} \sin \theta \cos \phi-\frac{a^{2}}{R^{2}}\right]\right]^{-1 / 2} \cong 1+\frac{a}{R} \sin \theta \cos \phi-\frac{1}{2} \frac{a^{2}}{R^{2}}+\frac{3}{2} \frac{a^{2}}{R^{2}} \sin ^{2} \theta \cos ^{2} \phi \tag{5}
\end{equation*}
$$

Then, (4) becomes

$$
\Phi \cong-\frac{G M}{2 \pi R}\left[2 \pi-\frac{1}{2} \frac{a^{2}}{R^{2}} 2 \pi+\frac{3}{2} \frac{a^{2}}{R^{2}} \pi \sin ^{2} \theta\right]
$$

Thus,

$$
\begin{equation*}
\Phi(R) \cong-\frac{G M}{R}\left[1-\frac{1}{2} \frac{a^{2}}{R^{2}}\left[1-\frac{3}{2} \sin ^{2} \theta\right]\right] \tag{6}
\end{equation*}
$$

5-14. Think of assembling the sphere a shell at a time ($r=0$ to $r=R$).
For a shell of radius r, the incremental energy is $d U=d m \phi$ where ϕ is the potential due to the mass already assembled, and $d m$ is the mass of the shell.
So

$$
\begin{gathered}
d m=\rho 4 \pi r^{2} d r=\left[\frac{3 M}{4 \pi R^{3}}\right] 4 \pi r^{2} d r=\frac{3 M r^{2} d r}{R^{3}} \\
\phi=-\frac{G m}{r} \text { where } m=M \frac{r^{3}}{R^{3}}
\end{gathered}
$$

So

$$
\begin{aligned}
U & =\int d u \\
& =\int_{r=0}^{R}\left[\frac{3 M r^{2} d r}{R^{3}}\right]\left[-\frac{G M r^{2}}{R^{3}}\right] \\
& =-\frac{3 G M^{2}}{R^{6}} \int_{0}^{R} r^{4} d r \\
& U=-\frac{3}{5} \frac{G M^{2}}{R}
\end{aligned}
$$

