5-3. In order to remove a particle from the surface of the Earth and transport it infinitely far
away, the initial kinetic energy must equal the work required to move the particle from r =R,

to r = oo against the attractive gravitational force:
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where M, and R, are the mass and the radius of the Earth, respectively, and v, is the initial
velocity of the particle at r=R, .

Solving (1), we have the expression for v, :

v, = - 2)

Substituting G=6.67 x10™"! m’/kg-s*>, M, =5.98x10* kg, R, =6.38 x10° m, we have

v, 211.2 km/sec| 3)

5-7.

The contribution to the potential at P from a small line element is

dd = -G 2L dx 1)
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where p, = % is the linear mass density. Integrating over the whole rod, we find the potential
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Using Eq. (E.6), Appendix E, we have
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5-10.

Using the relations

x= \/(Rsiné?)z +a* —2aRsin Ocos ¢

r=x2 +R*cos? 0 = \,/R2 +a* —2aRsin fcos ¢

P, = M (the linear mass density),
27a

the potential is expressed by
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If we expand the integrand and neglect terms of order (a/ R)3 and higher, we have
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Then, (4) becomes
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Thus,
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5-14. Think of assembling the sphere a shell at a time (r = 0 to » = R).
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For a shell of radius 7, the incremental energy is dU = dm ¢ where ¢ is the potential due to the

mass already assembled, and dm is the mass of the shell.

So
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