Tody: Lagrangian
Friday: Hamiltonian

$$
\begin{aligned}
& \vec{v}=\dot{r} \hat{v}+r \dot{\theta} \hat{\theta}+\dot{z} \hat{z} \\
& \tan \alpha=\frac{r}{z} \\
& z=r \cot \alpha \\
& \dot{z}=\dot{r} \cot \alpha \\
& v^{2}=\dot{r}^{2}+{r^{2}}^{2}+\dot{r}^{2} \cot ^{2} \alpha \\
& u=m g h=m g r \cot \alpha\}(m g z) \quad \text { engin } \quad \operatorname{ing}^{2} \\
& n \text { goes up } \\
& \text { as you go up. } \\
& L=T-n=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{r}^{2} \cot ^{2} \alpha\right)-m g r \cot \alpha \\
& \frac{\partial L}{\partial r}=m r \dot{\theta}^{2}-m y \cot \alpha \\
& \frac{\partial L}{\partial \dot{r}}=m \dot{r}+m \dot{r} \cot ^{2} \alpha=m \dot{r}\left(1+\cot ^{2} \alpha\right) \cdot \frac{\sin ^{2} \alpha}{\sin ^{2} \alpha} \\
& =m \dot{r} \csc ^{2} \alpha \\
& \frac{\partial L}{\partial \theta}=\phi ; \frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta}=\text { cost }=c_{1} \\
& \text { bechance } \frac{d}{a t}\left(\frac{\partial L}{\partial \dot{o}}\right)=+\frac{\partial L}{\partial \theta} \\
& L \text { is cyclic in }
\end{aligned}
$$

( ) or or is a cyclic variable.

Physically this is the angular moment urn.
Define generalized momenturn $P_{\theta} \equiv \frac{\partial L}{\partial \theta}$

$$
P_{j}=\frac{\partial L}{\partial \epsilon_{j}}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial r}-\frac{A}{\partial t}\left(\frac{\partial L}{\partial \dot{r}}\right)=\varnothing \\
& m r \dot{\theta}^{2}-m g \cot \alpha-m \ddot{r} \csc ^{2} \alpha=\varnothing \\
& m \ddot{r}-m r \sin ^{2} \alpha \dot{\theta}^{2}+m g \cos \alpha \sin \alpha=\varnothing \\
& m \ddot{r}-m s \sin ^{2} \alpha\left(\frac{c_{1}}{m r^{2}}\right)^{2}+m g \cos \alpha \sin \alpha=\varnothing \\
& m \ddot{r}-\frac{c_{1}^{2} \sin ^{2} \alpha}{m r^{3}}+m g \cos \alpha \sin \alpha=\varnothing \\
& \operatorname{coor} \alpha s
\end{aligned}
$$



Coords
Another:


$$
\begin{aligned}
& \frac{m_{1}}{\vec{v}}=\dot{x} \dot{x} \\
& u_{1}=\varnothing
\end{aligned}
$$

$m_{2}$

$$
\begin{aligned}
& \vec{x}_{\text {ral }}=L \sin \theta \hat{x} \\
& u_{2}=m g h \\
& =-m_{2} g L \cos \theta \\
& \vec{y}_{\text {rel }}=-L \cos \theta \hat{y} \\
& \vec{r}_{r a l}=L \sin \theta \hat{x}-L \cos \theta \hat{y} \\
& \vec{v}_{\text {ral }}=L \cos \theta \dot{\theta} \hat{x}+L \sin \theta \dot{\theta} \hat{y} \\
& T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}(\dot{x}+L \cos \theta \dot{\theta})^{2}+\frac{1}{2} m_{2}(L \sin \theta \dot{\theta})^{2} \\
& =\frac{1}{2}\left(m_{1}+m_{2}\right) \dot{x}^{2}+m_{2} L \cos \dot{\theta} \dot{x} \dot{\theta}+\frac{1}{2} m_{2} L^{2} \dot{\theta}^{2} \\
& L=T-u \\
& \frac{\partial L}{\partial \theta}=-m_{2 \delta} L \sin \theta-m_{2} L \sin 6 \dot{x} \dot{\theta} \\
& \frac{\partial L}{\partial \dot{\theta}}=m_{2} L \cos \theta \dot{x}+m_{2} L^{2} \dot{\theta} \quad \frac{d}{d t}()=-m_{2} L \sin \theta \dot{\theta} \dot{x} \\
& \begin{array}{l}
+m_{2} L \cos \theta \\
+m_{2} L^{2} \ddot{0}
\end{array} \\
& \frac{d L}{\partial 6}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=-m_{2} g L \sin \theta-m_{2} L \cos \theta \ddot{x}-m_{2} L^{2} \ddot{\theta}=\varnothing
\end{aligned}
$$

$$
\frac{\partial L}{\partial x}=\varnothing \quad \rightarrow \frac{\partial L}{\partial \dot{x}}=\text { const }
$$

$x$ is cyclic $\quad \frac{\partial L}{\partial \dot{x}}=\left(m_{1}+m_{2}\right) \dot{x}+m_{2} L \cos \theta \dot{\theta}$

$$
=\text { const. }
$$

Example:


$$
\begin{aligned}
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}-L \sin \theta \quad u=-m g L \cos \theta \\
& y=-L \cos \theta \\
& \dot{x}=v_{0}+a t-L \cos \theta \dot{\theta} \\
& \dot{\varphi}=L \sin \theta \dot{\theta} \\
& T=\frac{1}{2} m\left[\left(v_{0}+a t-L \cos \theta \dot{\theta}\right)^{2}+L^{2} \sin ^{2} \dot{\theta}^{2}\right] \\
& L=\frac{1}{2} m\left[v_{0}^{2}+a^{2} t^{2}+L^{2} \cos ^{2} \dot{\theta}^{2} / 2\left(v_{0}+a t\right) L \cos \theta \dot{\theta}\right. \\
&\left.+2 v_{0} a t+L^{2} \sin ^{2} \theta \dot{\theta}^{2}\right]+m g L \cos \theta \\
& \frac{\partial L}{\partial \theta}=m\left(v_{0}+a t\right) L \sin \theta \dot{\theta}-m g L \sin \theta \\
& \frac{\partial L}{\partial \dot{\theta}}=m L^{2} \dot{\theta}-m\left(v_{0}+a t\right) L \cos \theta \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=m L^{2} \ddot{\theta}+m\left(v_{0}+a t\right) L \sin \theta \dot{\theta}-m L a \cos \theta \\
& \frac{\partial L}{\partial \theta}-\frac{d}{a t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=-m g L \sin \theta-m L^{2} \ddot{\theta}+m L a \cos \theta \\
& \ddot{\theta}=\frac{a}{L} \cos \theta-\frac{g}{L} \sin \theta
\end{aligned}
$$

