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Raytracing: single curved interface 
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Raytracing: two curved interfaces 
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-  add second interface: R > 0 if center is to right  
-  assume y2=y1 
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Raytracing 
•  Approches: 

–  Paraxial tracing (assume small angle to optical axis) 
–  Computer tracing (no approximations). Example: Zemax, Oslo,… 

•  Design procedure 
–  Find existing design close to what could work 
–  Paraxial trace with ray diagram 

•  Calculate magnification, limiting apertures 
–  Optimize with ABCD matrices or computer program 
–  Analyze aberrations 



ABCD ray matrices 
•  Formalism to propagate rays through optical systems 

–  Keep track of ray height  r  and ray angle θ = dr/dz = r’ 
–  Treat this pair as a vector: 

–  Optical system will modify both the ray height and angle, e.g.  

–  Successive ABCD matrices multiply from the left 

•  Translation 
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Refraction in ABCD 
•  Translation:  
•  Flat interface 

•  Window: calculate matrix 
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Curved surfaces in ABCD 
•  Thin lens: matrix computes transition from one side of lens 

to other 

•  Spherical interface: radius R 
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Curved wavefronts 
•  Rays are directed normal to surfaces of constant phase 

–  These surfaces are the wavefronts 
–  Radius of curvature is approximately at the focal point 

•  Spherical waves are solutions to the wave equation (away 
from r = 0) 
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Paraxial approximations 
•  For rays, paraxial = small angle to optical axis 

–  Ray slope: 

•  For spherical waves where power is directed forward: 
tanθ ≈θ
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Expanding to 
1st order 

Wavefront = surface of constant phase 
For x, y >0, t must increase. 
Wave is diverging:   
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3D wave propagation 

•  Note:  
–  All linear propagation effects are included in LHS: 

diffraction, interference, focusing… 
–  Previously, we assumed plane waves where transverse 

derivatives are zero.  
•  More general examples:  

–  Gaussian beams (including high-order) 
–  Waveguides 
–  Arbitrary propagation 
–  Can determine discrete solutions to linear equation (e.g. 

Gaussian modes, waveguide modes), then express fields 
in terms of those solutions. 
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Paraxial, slowly-varying approximations 
•  Assume 

–   waves are forward-propagating: 

–  Refractive index is isotropic 

 
–  Fast oscillating carrier terms cancel (blue) 

•  Slowly-varying envelope: compare red terms 
–  Drop 2nd order deriv if 

–  This ignores: 
•  Changes in z as fast as the wavlength 
•  Counterpropagating waves 
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