Raytracing: single curved interface

$$
\text { Snell: } n_{1} \sin \left(\theta_{i}\right)=n_{2} \sin \left(\theta_{r}\right)
$$

$$
\begin{aligned}
& \frac{y_{1}}{p}=\tan \left(\theta_{i}-\phi\right) \approx \theta_{i}-\phi \\
& \frac{y_{1}}{q}=\tan \left(\phi-\theta_{r}\right) \approx \phi-\theta_{r} \\
& \frac{y_{1}}{R_{1}}=\sin (\phi) \approx \phi
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n_{2}}{n_{1}}=\frac{\sin \left(\theta_{i}\right)}{\sin \left(\theta_{r}\right)} \approx \frac{\theta_{i}}{\theta_{r}}=\frac{\phi+\frac{y_{1}}{p}}{\phi-\frac{y_{1}}{q}}=\frac{\frac{y_{1}}{R_{1}}+\frac{y_{1}}{p}}{\frac{y_{1}}{R_{1}}-\frac{y_{1}}{q}}=\frac{\frac{1}{R_{1}}+\frac{1}{p}}{\frac{1}{R_{1}}-\frac{1}{q}} \quad \text { In paraxial appx, y' s cancel } \\
& n_{2}\left(\frac{1}{R_{1}}-\frac{1}{q}\right)=n_{1}\left(\frac{1}{R_{1}}+\frac{1}{p}\right) \rightarrow \frac{1}{R_{1}}\left(n_{2}-n_{1}\right)=\frac{n_{2}}{q}+\frac{n_{1}}{p}
\end{aligned}
$$

Raytracing: two curved interfaces

- add second interface: $\mathrm{R}>0$ if center is to right
- assume $y_{2}=y_{1}$

Eqn from 1st:

$\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)=\frac{n_{2}}{q}+\frac{n_{1}}{p}$
Adapt to 2nd interface:

$$
\begin{aligned}
& n_{1} \leftrightarrow n_{2} \quad q \rightarrow q^{\prime} \quad p \rightarrow-q \\
& \rightarrow \frac{1}{R_{2}}\left(n_{1}-n_{2}\right)=\frac{n_{1}}{q^{\prime}}-\frac{n_{2}}{q}
\end{aligned}
$$

p

Solve eqn1 for image distance
$\rightarrow \frac{n_{2}}{q}=\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)-\frac{n_{1}}{p}$
$\frac{1}{R_{2}}\left(n_{1}-n_{2}\right)=\frac{n_{1}}{q^{\prime}}-\frac{1}{R_{1}}\left(n_{2}-n_{1}\right)+\frac{n_{1}}{p}$
$\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\left(\frac{n_{2}}{n_{1}}-1\right)=\frac{1}{q^{\prime}}+\frac{1}{p}$
n_{1}
n_{1}
$\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\left(\frac{n_{2}}{n_{1}}-1\right)=\frac{1}{f}$
Focal length (lensmaker's eqn)
$\frac{1}{f}=\frac{1}{s_{o}}+\frac{1}{s_{i}} \quad$ Imaging equation

Raytracing

- Approches:
- Paraxial tracing (assume small angle to optical axis)
- Computer tracing (no approximations). Example: Zemax, Oslo,...
- Design procedure
- Find existing design close to what could work
- Paraxial trace with ray diagram
- Calculate magnification, limiting apertures
- Optimize with ABCD matrices or computer program
- Analyze aberrations

ABCD ray matrices

- Formalism to propagate rays through optical systems
- Keep track of ray height r and ray angle $\theta=d r / d z=r$
- Treat this pair as a vector:

$$
\binom{r}{r^{\prime}}
$$

- Optical system will modify both the ray height and angle, e.g.

$$
\binom{r_{2}}{r_{2}^{\prime}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{r_{1}}{r_{1}^{\prime}}
$$

- Successive ABCD matrices multiply from the left
- Translation

$$
\begin{aligned}
& r_{2}=r_{1}+L r_{1}^{\prime} \\
& r_{2}^{\prime}=r_{1}^{\prime}
\end{aligned} \rightarrow\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

Refraction in ABCD

- Translation: $\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$
- Flat interface

$$
\begin{array}{lll}
r_{2}=r_{1} & \begin{array}{ll}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
n_{1} \theta_{1} \approx n_{2} \theta_{2}
\end{array} & \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & n_{1} / n_{2}
\end{array}\right) \\
& \begin{array}{c}
r_{2}^{\prime}=\frac{n_{1}}{n_{2}} r_{1}^{\prime} \\
\\
\\
n_{1}=1, n_{2}=n
\end{array}
\end{array} \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / n
\end{array}\right)
$$

- Window: calculate matrix

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / n
\end{array}\right) \\
& \quad=\left(\begin{array}{ll}
1 & 0 \\
0 & n
\end{array}\right)\left(\begin{array}{ll}
1 & L / n \\
0 & 1 / n
\end{array}\right)=\left(\begin{array}{cc}
1 & L / n \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Effective thickness reduced by n

Curved surfaces in ABCD

- Thin lens: matrix computes transition from one side of lens to other

$$
\frac{1}{q}=\frac{1}{f}-\frac{1}{p} \quad \rightarrow r_{2}^{\prime}=-r_{1}\left(\frac{1}{f}-\frac{1}{p}\right)=-\frac{r_{1}}{f}+r_{1}^{\prime} \quad \rightarrow\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)
$$

- Spherical interface: radius R
$\rightarrow\left(\begin{array}{cc}1 & 0 \\ \frac{n_{1}-n_{2}}{n_{2}} \frac{1}{R} & \frac{n_{1}}{n_{2}}\end{array}\right)$

Curved wavefronts

- Rays are directed normal to surfaces of constant phase
- These surfaces are the wavefronts
- Radius of curvature is approximately at the focal point

- Spherical waves are solutions to the wave equation (away from $r=0$)
$\nabla^{2} E+\frac{n^{2} \omega^{2}}{c^{2}} E=0$

$$
\begin{aligned}
& E \propto \frac{1}{r} e^{i(t k r-\omega t)} \\
& I \propto \frac{1}{r^{2}}
\end{aligned}
$$

Scalar r

+ outward
- inward

Paraxial approximations

- For rays, paraxial = small angle to optical axis
- Ray slope: $\tan \theta \approx \theta$
- For spherical waves where power is directed forward:

$$
\begin{aligned}
& e^{i k r}=\exp \left[i k \sqrt{x^{2}+y^{2}+z^{2}}\right] \\
& k \sqrt{x^{2}+y^{2}+z^{2}}=k z \sqrt{1+\frac{x^{2}+y^{2}}{z^{2}}} \approx k z\left(1+\frac{x^{2}+y^{2}}{2 z^{2}}\right) \quad \begin{array}{l}
\text { Expanding to } \\
1^{\text {st }} \text { order }
\end{array} \\
& e^{i(k r-\omega t)} \rightarrow e^{i k z} \exp \left[i\left(k \frac{x^{2}+y^{2}}{2 z}-\omega t\right)\right] \quad z \text { is radius of curvature }
\end{aligned}
$$

Wavefront = surface of constant phase $k \frac{x^{2}+y^{2}}{2 z}=\omega t$ For $\mathrm{x}, \mathrm{y}>0$, t must increase. Wave is diverging:

3D wave propagation

$$
\nabla^{2} \mathbf{E}-\frac{n_{j}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=\frac{\partial^{2}}{\partial z^{2}} \mathbf{E}+\nabla_{\perp}{ }^{2} \mathbf{E}-\frac{n(\mathbf{r})^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=0
$$

- Note:

$$
\nabla_{\perp}^{2}=\partial_{x}^{2}+\partial_{y}^{2} \quad \nabla_{\perp}^{2}=\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{1}{r^{2}} \partial_{\phi}^{2}
$$

- All linear propagation effects are included in LHS: diffraction, interference, focusing...
- Previously, we assumed plane waves where transverse derivatives are zero.
- More general examples:
- Gaussian beams (including high-order)
- Waveguides
- Arbitrary propagation
- Can determine discrete solutions to linear equation (e.g. Gaussian modes, waveguide modes), then express fields in terms of those solutions.

Paraxial, slowly-varying approximations

- Assume
- waves are forward-propagating:

$$
\mathbf{E}(\mathbf{r}, t)=\mathbf{A}(\mathbf{r}) e^{i\left(k z-\omega_{0} t\right)}+\text { c.c. }
$$

- Refractive index is isotropic

$$
\frac{\partial^{2}}{\partial z^{2}} \mathbf{A}+2 i k \frac{\partial}{\partial z} \mathbf{A}-k^{2} \mathbf{A}+\nabla_{\perp}{ }^{2} \mathbf{A}+\frac{n^{2} \omega_{0}{ }^{2}}{c^{2}} \mathbf{A}=0
$$

- Fast oscillating carrier terms cancel (blue)
- Slowly-varying envelope: compare red terms
- Drop $2^{\text {nd }}$ order deriv if $\frac{2 \pi}{\lambda} \frac{1}{L} A \gg \frac{1}{L^{2}} A$
- This ignores:
- Changes in z as fast as the wavlength
- Counterpropagating waves

