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Gaussian beam solution to wave 
equation 

•  Use Fresnel integral to propagate a Gaussian 
beam 

–  Combine quadratic terms in exponent:  

–  Now integral is a F.T. of a complex Gaussian=Gaussian 
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Complex q form for Gaussian beam 
•  This combines beam size and radius of curvature 

into one complex parameter 
–  This form is used for for ABCD calculations 
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Complex q vs standard form 
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Expand exponential: 

Expand leading inverse q: 



Standard form of Gaussian beam solutions 
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Beam maintains a Gaussian profile as it propagates 
-  beam radius that varies with z 
-  Origin of z coordinate is at the beam waist 
-  Rayleigh length zR defines collimation distance from focal plane   

Geometric limit for z>>zR 
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Evolution of wavefronts 

•  Wavefront curvature evolves with z as beam size changes 
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On-axis phase: Gouy phase 

•  Because the wavefront changes from focusing to 
defocusing, on-axis phase advances with z 
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Higher-order Hermite-Gauss modes 
–  The Gaussian beam is just the lowest order mode 

solution to the wave equation 
–  x, y coordinates: Hermite-Gaussian modes 

ηlm = (l +m +1)tan−1 z
zR

⎛
⎝⎜

⎞
⎠⎟

E x, y, z( ) = A0e− i k z−ηlm z( )( ) w0
w z( ) e

− x
2+y2

w2 z( )Hl
2x

w(z)
⎛

⎝⎜
⎞

⎠⎟
Hm

2y
w(z)

⎛

⎝⎜
⎞

⎠⎟
e
− i
k x2+y2( )
2R z( )

Hermite-Gauss functions are the 
same as solutions to quantum SHO 

Transverse profile is maintained 
during propagation (scaled with 
w(z) ) 



Higher-order LaGuerre-Gauss modes 
–  In cylindrical coordinates, alternate representation 
–  Azimuthal phase   “vortex” phase  

Example:  
LG10 mode is a linear 
combination of HG10 
and HG01 

exp imφ[ ]



Difference between Siegman’s 
complex q and standard form 

•  Siegman’s form for the complex q is used almost 
everywhere for the ABCD calculations. 

•  He uses the exp[+ I w t] convention, which accounts for 
the sign difference in the complex exponentials. 

•  With exp[-I w t] convention, define q as: 
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Compare Boyd’s form to standard: 
•  Boyd’s complex form is consistent with standard 

Gaussian beam form 
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Gaussian beams and ABCD 
•  General expression 

–  Since q is defined through its inverse, alternate: 

–  Note that ABCD matrices are the same as for raytrace 
–  Application is not a multiplication like matrix.vector 
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Simple Gaussian ABCD examples: 
translation 

•  translation 
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Simple Gaussian ABCD examples: lens 
•  Focusing by a lens 

–  Radius of curvature is modified by lens: 
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Focusing a Gaussian beam by a lens 
•  For a beam waist at lens entrance, distance from lens to 

focused waist is not exactly = f 
•  Define variables: 

w01 (w02 ) = input (focused) beam waist radius 
zR1 (zR2) = rayleigh range for input (focused) beam 
zm =  distance from lens to focused beam waist 

•  Use Gaussian beam equations to back propagate to lens 

•  Divide equations: 
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Gaussian beam focusing 
•  From prev slide: 

•  Let 

•  Go back to expressions for zR1 and f: 
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Interpretation of results 
•  Ratio        determines effect of input beam 

Rayleigh range on position of focus 
–  Distance to beam waist is shorter than f 
–  This matters only when zR1 is comparable to f 

•  Focused spot size: 
–  For  
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Focused Gaussian beam: ABCD version 
•  Define input q: 

•  Lens:        q just after lens: 

•  Translation by zm: 

•  At zm, beam is at a waist, so  
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Then solve.  


