Reading: G8.1 (Review 7.3)
Tomorrow: G. 8.2

Work and energy
From Phys 1: $\quad W=\int \vec{F} \cdot d \vec{l}=\Delta\left(\frac{1}{2} m v^{2}\right)$
From Newtoris $z^{\text {nd }}$
Low for a particle

$$
m \frac{d j}{d t}=F
$$

Charge conservation

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{J}=-\frac{\partial \rho}{\partial t} \\
\int \bar{\nabla} \cdot \vec{J} d v=-\int \frac{\partial \rho}{\partial t} d v \rightarrow \int \vec{z} \cdot d \vec{a}=\frac{-\partial g_{\text {exc }}}{\partial t}
\end{gathered}
$$

What about energy in E3M

$$
\begin{aligned}
& W=\int \vec{F} \cdot d \vec{l} \\
& =\int \vec{F} \cdot d \vec{l} d t \quad \ell_{\text {time }}^{\text {to move }} \text { it tans } \\
& =\int \vec{F} \cdot \frac{d \vec{l}}{l t} d t \\
& W=\int_{\uparrow}^{\vec{F}} \cdot \vec{v} d t=\int \frac{d W}{d t} d t=\int \frac{d u_{\text {mech }}}{d t} d t \\
& \text { Power (energy delivered per time) }
\end{aligned}
$$

For ESM, what's \vec{F} ? $\quad \vec{F}=q \vec{E}+q \vec{B} \times \vec{B}$
Power being delivered is:

What in q in volume?

$$
q=\int \rho d v=\int d q
$$

Take limit as volume goes to small.

$$
\frac{\text { mall. }}{d q} \approx \rho d V
$$

$$
\begin{aligned}
& \text { s: } \\
& +(q \vec{v} \times \overrightarrow{8})^{\phi} \cdot \vec{v}
\end{aligned}
$$

Power being delivered to

$$
\begin{aligned}
d q \cdot \vec{F} \cdot \vec{v} & =\rho d V(\vec{E} \cdot \vec{v}) \\
& =(\vec{E} \cdot \vec{J}) d V \quad\{\vec{J}=\rho \vec{v}\}
\end{aligned}
$$

Let's look at $\vec{E} \cdot \vec{J}, \vec{J} \cdot \vec{E}$.
We ME:

$$
\begin{gathered}
M_{E}: \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
\Rightarrow \vec{J}=\frac{1}{\mu_{0}} \vec{\nabla} \times \vec{B}-c_{0}^{2} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
\vec{J} \cdot \vec{E}=\left(\frac{1}{\mu_{0}} \vec{\nabla} \times \vec{B}-\varphi_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}\right) \cdot \vec{E} \\
=\frac{1}{\mu_{0}}(\vec{\nabla} \times \vec{B}) \cdot \vec{E}-1 / \mu_{0} t \cdot \frac{\partial \vec{E}}{\partial t} \cdot \vec{E}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Vector identity: } \\
& \begin{array}{l}
\vec{\nabla} \cdot(\vec{A} \times \vec{B})=\vec{B}(\vec{\nabla} \times \vec{A})-\vec{A} \cdot(\vec{D} \times \vec{B}) \\
\rightarrow \vec{A} \rightarrow \vec{E})
\end{array} \\
& \rightarrow \vec{k} \rightarrow \vec{E}, \vec{B} \rightarrow \vec{B} \\
& \vec{E} \cdot(\vec{\nabla} \times \vec{B})=\vec{B} \cdot(\vec{\nabla} \times \vec{E})-\vec{\nabla} \cdot(\vec{B} \times \vec{B}) \\
& \rightarrow=\frac{1}{\mu_{0}}[\vec{B} \cdot(\vec{\nabla} \times \vec{E})-\vec{\nabla} \cdot(\vec{E} \times \vec{B})]-\epsilon_{0} \frac{\partial \vec{E}}{\partial t} \cdot \vec{E} \\
& \text { Using } M E: \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{E} \cdot \vec{J}=\frac{1}{\mu_{0}}\left[\vec{B} \cdot\left(-\frac{\partial \vec{B}}{\partial t}\right)-\vec{\nabla} \cdot(\vec{E} \times \vec{B})\right]-\epsilon_{0} \frac{\partial E}{\partial t} \cdot \vec{E} \\
& =-\frac{1}{\mu_{0}} \vec{B} \cdot \frac{\partial \vec{B}}{\partial t}-\epsilon_{0} \overrightarrow{\vec{t}} \cdot \frac{\partial \vec{E}}{\partial t}-\frac{1}{\mu_{0}} \cdot(\vec{E} \times \vec{B}) \\
& \frac{\partial}{\partial t}\left(B^{2}\right)=2 \vec{B} \cdot \frac{\partial \vec{B}}{\partial t} \text {; for } \vec{E} \text { as wen } \\
& =-\frac{\partial}{\partial t}(\underbrace{\frac{1}{2 \mu_{0}} B^{2}+\frac{\epsilon_{0}}{2} E^{2}}_{u_{\text {em }}})-\vec{\nabla} \cdot \underbrace{(\underbrace{\frac{1}{\mu_{0}} \vec{E} \times \vec{B}})}_{\frac{\Delta}{s}}
\end{aligned}
$$

\{EM energy dons\} ~ \ { p o y n t i n g ~ v e c t o r \ } ~

$$
\begin{aligned}
& \vec{J} \cdot \vec{E}=-\frac{\partial u_{\mathrm{em}}}{\partial t}-\vec{\nabla} \cdot \vec{S} \\
& \frac{-\partial u_{\mathrm{em}}}{\partial t}=\vec{\nabla} \cdot \vec{S}+\vec{J} \cdot \vec{E}
\end{aligned}
$$

Conservation Lan for energy in E3M.

$$
u_{e m}=\frac{1}{2 \mu_{0}} s^{2}+\frac{\epsilon_{0}}{2} E^{2}
$$

To find $U_{\text {em }}$ \{total energy\} in a volume.

$$
U_{\text {em }}=\int \frac{1}{2 \mu_{0}} B^{2}+\frac{G_{0}}{2} E^{2} d V
$$

Conservation law in integral form:

$$
-\frac{\partial}{\partial t}\left(\int_{\text {u em }} d V\right)=\oint \vec{s} \cdot d \overrightarrow{a_{0}}+\int_{\uparrow} \overrightarrow{\vec{J}} \cdot \vec{t} d V
$$

Power being delivered to the hararges inside the volume.

$$
-\frac{\partial}{\partial t} \mathbb{U}_{e m}-\overbrace{\frac{\partial}{\partial t} \mathbb{U}_{\text {med }}}=\oint \vec{s} \cdot d \vec{a}
$$

Let's tall about signs
Lets say you have a positive charge moving to the right

If I want to speed it up, which direction should \mathbb{E} point? To the right.

$$
\vec{J} \cdot \vec{E}>\varnothing
$$

Tare the volume out to infinity

$$
\begin{gathered}
\delta \vec{S} \cdot d \vec{a}=\varnothing \\
\rightarrow \int \vec{J} \cdot \vec{E} d V=-\frac{\partial}{\partial t} \int u_{\text {em }} d V
\end{gathered}
$$

Title: Jun 29-6:35 PM (7 of 7)

