
MATH348: SPRING 2012 - HOMEWORK 1

RESULTS FROM ORDINARY DIFFERENTIAL EQUATIONS

Some light being pulled you up from nights party and said clap your hands if you think your soul is free.

Abstract. With the exception of linear algebra, most of our course material will be dominated

by results from ordinary differential equations. So, it would be a good idea to solidify and pro-

vide scope to our understanding of linear 2nd−order ordinary differential equations for which we

should note that our goal has always been to find two linearly independent solutions whose linear

combination is then added to a particular solution to form the general solution set. If this is the

prescription then the real trouble is in how one finds each of the pieces, that is, the two linearly

independent solutions to the homogeneous problem and one particular solution to the inhomoge-

neous problem. These problems take us through the standard procedures and can be summarized

as follows:

P1. In this problem we go back to the fundamentals. Since you have been trained to do constant

coefficient problems, we take a little time to remind ourselves of the mass-spring models and

how the quadratic equation can be used to define particular types of mass-spring dynamics.

Also, we introduce the hyperbolic trigonometric functions and cast solutions to the mass-

spring ODE into hyperbolic form.

P2. Building on the ‘new’ hyperbolic trigonometric functions and in preparation of things to come

we breakdown the undamped oscillator case. To really drive home the inter-relationships

between the hyperbolic trigonometric functions to their circular counterparts we do the

problem through power-series methods, which reminds us of the method and some very

important Taylor series formulae. Most of this I expect you have seen so we finish with the

concept of a boundary value problem, which will be important for our study of PDE.

P3. A boundary value problem is a ubiquitous thing and we are not always lucky enough to

have an undamped oscillator as the underlying ODE. However, there types of ODEs that

are common to BVP and linear PDE have a general form known as Sturm-Liouville form.

In this problem we look at the different types of ODE that come from such an equation.

P4. We didn’t need to do problem 2 using power-series, it was just good practice and an important

reminder of common Taylor series. We should spend time with a problem that requires power-

series techniques. Since power-series methods comprise a large amount of material we trim

our study down to a specific equation, Bessel’s Equation, that can be dealt with through the

techniques we have just practiced and those taught in MATH225. The solution, known as

Bessel’s function of the first-kind, will be given character later when we study the vibrations

of an ideal drumhead.

P5. Lastly, we can’t leave this material without showing some important, though cumbersome,

formulae that allow us, given one solution to a second order linear ODE, to construct the

general solution. While we won’t need these formulae again, they do justify the guessing and

checking you were taught in previous classes, which some of you may have thought was a

little fishy.

1. Review of 2nd−order Constant Linear Homogeneous ODEs

The ordinary differential equation (ODE),

ay′′ + by′ + cy = 0, a, b, c ∈ R(1.1)

is called a homogeneous linear ODE with constant coefficients and defines an infinite family of

solutions with two degrees of freedom. Specifying a value of the solution and its derivative for

the same point in time/space determines a single unique solution from the infinite family. A more
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2 RESULTS FROM ORDINARY DIFFERENTIAL EQUATIONS

physical way of thinking about this is to write (1.1) as,

my′′ + by′ + ky = 0, m, b, k ∈ R+,(1.2)

which models the free dynamics of a point-mass attached to an Hookean spring moving in a viscous

background. To find unique dynamics one must know the initial displacement from equilibrium,

y(0) = y0 ∈ R, and the initial velocity, y′(0) = y′0 ∈ R. To build intuition from your previous

coursework, namely MATH225 and PHGN100, we continue with the notation of (1.2).

1.1. Quadratic equations and its three cases. 1 Solve (1.2) three times with the following

values

(m, b, k) = {(2, 8, 6), (1,−4, 13), (1, 4, 4)}(1.3)

and initial conditions y(0) = 1 and y′(0) = −1.

1.2. The role of the coefficient of kinetic friction. 2 Let m = 1, k = 9 and determine values

for b such that the system is undamped, underdamped, critically damped and overdamped.

1.3. The general case. Show that for arbitrary m, b, k ∈ R the general solutions are given by:3

1You may go directly to problem 1.3 if this review is not needed.
2Again, you may skip directly to problem 1.3 if this is clear to you.
3 This table summarizes all the different cases for constant coefficient problems and though there are a lot of

symbols it isn’t too hard to come up with them. The only real tricky parts are the conversions from exponentials to

circular/hyperbolic trigonometric functions. I offer the following hint/algorithm to work this table out.

i. Begin with assuming that y(t) = eλt to get the characteristic polynomial mλ2 + bλ + k = 0 whose solution is

given by the quadratic equation – see first-row last column of the table.

ii. Notice that if b2 − 4km 6= 0 that there are two different exponential solutions for each decay-rate/frequency

λ1, λ2 and that these two solutions are linearly independent by a nonzero Wronskian determinant, W =

det

([
y1 y2

y′1 y′2

])
= y1y′2 − y′1y2, which is easiest to do in exponential form.

iii. Using the substitutions given in the right-hand columns, show that the exponential forms are equivalent to

their ‘trigonometric’ counterparts. Linear independence should still be maintained since this is just an algebraic

recasting, i.e. addition and scalar multiplication.

iv. In the repeated root case, show that y2(t) = teλt is a solution to the original ODE and that this is linearly

independent to y1.

After this you are done.
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Discriminant Solutions Homogeneous Solution Definitions

b2 − 4mk > 0
y1(t) = eλ1t

y2(t) = eλ2t

yh(t) = c1e
λ1t + c2e

λ2t

= a1e
αt cosh(βt) + a2e

αt sinh(βt)

c1, c2, a1, a2 ∈ C
2c1 = a1 + a2, 2c2 = a1 − a2,

λ = α± β

α =
−b
2m

, β =

√
b2 − 4km

2m

λ1 =
−b+

√
b2 − 4km

2m

λ2 =
−b−

√
b2 − 4km

2m

b2 − 4mk < 0
y1(t) = eλ1t

y2(t) = eλ2t

yh(t) = c1e
λ1t + c2e

λ2t

= a1e
αt cos(βt) + a2e

αt sin(βt)

c1, c2, a1, a2 ∈ C
a1 = c1 + ic2, a2 = c1 − ic2

λ = α± βi

α =
−b
2m

, β =

√
4km− b2

2m

b2 − 4mk = 0
y1(t) = eλt

y2(t) = teλt
yh(t) = c1e

λt + c2te
λt

c1, c2 ∈ C

λ =
−b
2m

2. Power Series, ‘Trigonometric’ Functions and Boundary Conditions

One way to think about a function is by the differential equation that defines it. For instance,

the exponential function we all know and love can be thought of as the unique function that solves

the equation y′ = ay, where a is some scalar, which is to say that the exponential function is the

only function that has the property that one differentiation returns a constant multiple of itself. It

is natural to then seek functions that do this upon two differentiations. That is, we seek to find

functions that obey the equation,

y′′ + λy = 0, λ ∈ R,(2.1)

which happens to be an equation that we will see repeatedly through the course.

2.1. Intuition. What functions satisfy this equation? Be careful to consider this for all possible

values of λ.

2.2. Power Series Solution to ODE. It is instructive to solve the previous problem by power

series. First, it is good practice and second it helps to connect the previous circular/hyperbolic

trigonometric functions to one another and their exponential ‘parent’. Find the solution to (2.1) by
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assuming y(x) =
∑∞
n=0 anx

n and finding a general formula an and thus a solution y(x).4 Make sure

to consider your solution for all possible values of λ.

2.3. Introduction to Boundary-Value Problem. You may have noticed that we have switched

our independent variable from time to space. This is because ODEs, while often associated with

mechanics/dynamics, often arise from spatial problems. However, in the spatial setting the isn’t

really the notion of an initial state. Consequently, one is typically provided spatial conditions called

boundary conditions that prescribe the value of a solution or its slope at two different points in

space. Specifically,

l1y(0) + l2y
′(0) = 0,(2.2)

r1y(L) + r2y
′(L) = 0.(2.3)

This problem is intractable, by hand, for general values of l1, l2, r1, r2. However, the following set of

values,

l1 l2 r1 r2

Case I 1 0 1 0

Case II 0 1 0 1

Case III 1 0 0 1

Case IV 0 1 1 0

lead to BVP that can be solved by hand. Find all nontrivial (non-zero) solutions and their corre-

sponding eigenvalues to (2.1) that satisfy the previous boundary conditions.

3. Introduction to Sturm-Liouville Problems

The previous problem is a specific case of a more general type of differential equation that that

underpins linear partial differential equations. First, we should notice that the previous problem is

a type of eigenvalue problem,
d2

dx2
[y] = −λy, which asks us to find the function y such that the

differentiation transforms y to be a scalar multiple of itself.5 With this in mind we define L, which

takes in a function y and returns a linear differential transformation of it in the following way.

L[y] =
1

w(x)

(
− d

dx

[
p(x)

dy

dx

]
+ q(x)y

)
.(3.1)

The corresponding eigenproblem, L[y] = λy, with the boundary conditions

l1y(0) + l2y
′(0) = 0,(3.2)

r1y(L) + r2y
′(L) = 0.(3.3)

4 Recall that any time one guesses a solution to a differential equation it is possible to check this guess by direct

substitution. The program is this:

i. From the power series find a formula for y′ and write the differential equation.

ii. Using re-indexing, write the differential equation as one summation – this can’t always be done for all terms but

it should be your primary goal of all power-series solution problems. You should have something that looks like∑
[?]xn = 0 and since power functions are linearly independent the only way to guarantee this sum is zero is by

forcing the coefficient to be zero. That is, the only way a linear combination of linearly independent objects can

be zero is to require that they are all scaled to zero, [?] = 0.

iii. Setting the previous coefficients to zero gives a recurrence relation and the goal now is to find a solution. This is

typically achieved, if possible, by plugging in values for the index and through using previous coefficients find a

pattern.

iv. If a general formula is found then the result is plugged back into the original power series and, when possible,

find any known Taylor series.

5 Recall from differential equations the matrix eigenvalue/eigenvector problem that looked like Ax = λx and asks

you to find a vector x such that transformation by the matrix multiplication of A returns a scalar multiple of itself.
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is called a Sturm-Liouville problem (SLP).6 If p, p′ and q are continuous functions on the interval

[0, L] and p(x) 6= 0 for all x ∈ [0, L] then (3.1)-(3.3) is called a regular SLP. Otherwise it is called

singular.

3.1. ‘Standard’ SLP. Find the form of L[y] = λy where p(x) = 1, q(x) = 0, w(x) = 1. For what

x−values is the problem singular?

3.2. Bessel’s Equation of order λ. Find the SL ODE for p(x) = −q(x) = [−w(x)]−1 = x. For

what x−values is the problem singular?

3.3. Legendre’s Equation. Find the SL ODE for p(x) = (1− x)2, q(x) = 0, w(x) = 1. For what

x−values is the problem singular?

4. Introduction to Bessel’s Equation

Regular SLP can be solved through standard power-series methods. On the other hand, singular

SLP can be difficult and require more the more advanced Frobenius method. While Bessel’s equation

is singular at x = 0, for λ = 0 Frobenius’ method actually reduces to the standard power-series

method. That is, Bessel’s equation of order-zero,

x2y′′ + xy′ + x2y = 0,(4.1)

can be solved by assuming y(x) =
∑∞
n=0 anx

n.

4.1. Power-Series: Step I. Using the power-series assumption, find the recurrence relation for

(4.1), an+2 = − an
(n+ 2)2

and show that a2n+1 = 0 for n = 0, 1, 2, 3, . . . .

4.2. Power-Series: Step II. Concentrating now on the even coefficients, show that a2k =
(−1)k

22k(k!)2
a0

and setting a0 = 1 write down J0(x) = y(x), which is called Bessel’s function of the first-kind of

order-zero.7

5. General Theory of 2nd−Order Linear ODE

When an ODE is linear and has constant coefficients then the problem is really asking us to find a

function that returns multiples of itself upon successive differentiation. We know these functions to

be exponentials/trig/hyperbolics and so the solution is some linear combination of these functions

where the decay-rate/frequency is defined by a polynomial root finding problem. If we are not so

lucky and the linear ODE has variable coefficients then we have the harder power-seres/recursion

problem but what we should notice is that we haven’t had to integrate anything. That is, we are

able to solve ODEs without using integration, which is quite surprising. That is not to say that a

theory of solving linear ODE through the use of integrals doesn’t exist. In fact, if we are given just

one solution to

a(x)y′′ + b(x)y′ + c(x)y = f(x)(5.1)

6 SLP are interesting because it can be shown that they admit infinitely-many real eigenvalues that that increase

to infinite. Moreover, the functions associated with distinct eigenvalues form a complete orthonormal set, which is to

say that can be used as a basis for a particular set/space of functions. These are exactly the functions we will study

in Fourier series and PDE.
7 The reason that it is called of the first kind is because there should be two linearly independent solutions to the

second order linear ODE and we have only found one. It turns out that we won’t need the Bessel function of the

second kind. So, we can stop here.
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then we can find a second linearly-independent solution and a particular solution, 8 and thus the

general solution, through the use of integrals.9

5.1. Second Linearly Independent Solution. Suppose that a(x) = 1, b(x) = 4, c(x) = 4, f(x) =

e−2x. 10 We know that y1(x) = e−2x is a solution to this problem and using the formula,

y2(x) = k(x)y1(x), k(x) =

∫
p(x)

[y1(x)]
2 dx, p(x) = e−

∫
(b(x)/a(x))dx,(5.2)

it is possible to find a second linearly independent solution to the ODE.11

5.2. Particular Solution: Part I. Using the formula,

yp(x) = y2

∫
f(x)y1(x)

a(x)W (x)
dx− y1

∫
f(x)y2(x)

a(x)W (x)
dx, W (x) = y1(x)y′2(x)− y′1(x)y2(x),(5.3)

find the form for the particular solution for a(x) = 1, b(x) = 4, c(x) = 4, f(x) = e−2x. 12 Also,

verify this solution using the method of undetermined coefficients.

5.3. Particular Solution: Part II. With our newfound trust, we use the previous formula on

a problem that couldn’t have been analyzed through previous methods. Solve the previous ODE

where a(x) = 1, b(x) = 0, c(x) = 1, f(x) = sec(x), where x > 0.

(Scott Strong) Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden,

CO 80401

E-mail address: sstrong@mines.edu

8 Recall that the idea was that given a(x)y′′ + b(x)y′ + c(x)y = f(x) we seek two solutions y1(x) and y2(x) such

that y1(x) 6= cy2(x) to the case where f(x) = 0 for all x, i.e. two linearly independent homogeneous solutions, and

then one solution to the full(non-homogeneous) problem. If this is done then the general solution (AKA all solutions)

is written as y(x) = yh(x) + yp(x) where yh(x) = c1y1(x) + c2y2(x) is the homogeneous solution and yp(x) is a

particular solution to the whole problem.
9 This is rarely needed since in most cases its possible to just always guess the right answers. However, it does

come in handy if you are in a bind.
10This problem is degenerate in the sense that it contains a repeated eigenvalue. Worse, the inhomogeneous term

competes with the associated eigenfunction. You can solve this completely using techniques from your previous course

work. We will use some formula to justify these techniques.
11These formulae are found by assuming a solution of the form y2 and checking it against the ODE. The steps are

tedious but the result is general and shows that when they told you to use y2(x) = xy1(x), they were right!
12You might notice that this can be done via the method of undetermined coefficients, which is considerably easier

even if you have to multiply your ‘guess’ by two factors of x!
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