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1 Introduction

The goal of these lecture notes is to introduce to the modeling of car traffic flow using con-

servation laws and to the numerical discretization of the resulting hyperbolic differential

equations.

Consider the traffic flow of cars on a highway with only one lane (i.e., overtaking is

impossible). Instead of modeling the cars individually, we use the density ρ(x, t) of cars

(in vehicles per kilometer, say) in x ∈ R at time t ≥ 0. The number of cars which are in
the interval (x1, x2) at time t is ∫ x2

x1

ρ(x, t) dx.
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Let v(x, t) denote the velocity of the cars in x at time t. The number of cars which pass

through x at time t (in unit length) is ρ(x, t)v(x, t). We want to derive an equation for the

evolution of the car density. The number of cars in the interval (x1, x2) changes according

to the number of cars which enter or leave this interval (see Figure 1.1):

d

dt

∫ x2

x1

ρ(x, t) dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t).

Integration of this equation with respect to time and assuming that ρ and v are regular

functions yields

∫ t2

t1

∫ x2

x1

∂tρ(x, t) dx dt =

∫ t2

t1

(ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t)) dx dt

= −
∫ t2

t1

∫ x2

x1

∂x (ρ(x, t)v(x, t)) dx dt.

Since x1, x2 ∈ R, t1, t2 > 0 are arbitrary, we conclude

ρt + (ρv)x = 0, x ∈ R, t > 0. (1.1)

This is a partial differential equation. It has to be supplemented by the initial condition

ρ(x, 0) = ρ0(x), x ∈ R. (1.2)

cars (x  ,t) v(x  ,t)ρ 2 2(x  ,t) v(x  ,t)
1

ρ
1

Figure 1.1: Derivation of the conservation law.

We also need an equation for the velocity v. We assume that v only depends on ρ

(see Section 3 for other choices). If the highway is empty (ρ = 0), we will drive with

maximal velocity v = vmax; in heavy traffic we will slow down and will stop (v = 0) in

a tailback where the cars are bumper to bumper (ρ = ρmax). The simplest model is the

linear relation

v(ρ) = vmax

(
1− ρ

ρmax

)
, 0 ≤ ρ ≤ ρmax.

Equation (1.1) then becomes

ρt +

[
vmaxρ

(
1− ρ

ρmax

)]

x

= 0, x ∈ R, t > 0. (1.3)
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This equation is a so-called conservation law since it expresses the conservation of the

number of cars. Indeed, integrating (1.3) formally over x ∈ R gives
d

dt

∫

R
ρ(x, t) dx = −

∫

R

∂

∂x

[
vmaxρ(x, t)

(
1− ρ(x, t)

ρmax

)]
dx = 0,

and thus the number of cars in R is constant for all t ≥ 0.
Equation (1.3) belongs to the class of hyperbolic equations. We call a system of equa-

tions

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0, (1.4)

u(x, 0) = u0(x), x ∈ R, (1.5)

with f : Rm → Rm hyperbolic if and only if for any u ∈ Rm, f ′(u) can be diagonalized and

has only real eigenvalues. A function u : R× [0,∞)→ Rm is called a classical solution of

(1.4)–(1.5) if u ∈ C1(R× (0,∞)) ∩ C0(R× [0,∞)) and u solves (1.4)–(1.5) pointwise.
Equation (1.3) can be simplified by bringing it in a dimensionless form. Let L and τ

be a typical length and time, respectively, such that L/τ = vmax. Introducing

xs =
x

L
, ts =

t

τ
, u = 1− 2ρ

ρmax

,

we obtain

∂tρ =
1

τ
∂ts

[ρmax

2
(1− u)

]
= −ρmax

2τ
∂tsu,

∂x

[
vmaxρ

(
1− ρ

ρmax

)]
=
1

L
∂xs

[
vmax

ρmax

2
(1− u)

1

2
(1 + u)

]
= −ρmax

2τ
∂xs

(
u2

2

)
,

and hence we can write (1.2)–(1.3) as (with (x, t) instead of (xs, ts))

ut +

(
u2

2

)

x

= 0, x ∈ R, t > 0, (1.6)

u(x, 0) = u0(x), x ∈ R, (1.7)

with u0 = 1 − 2ρ0/ρmax. If the highway is empty (ρ = 0), we have u = 1; in a tailback

(ρ = ρmax), u = −1 holds. Equation (1.6) is also called the inviscid Burgers equation.
In order to see how the solutions of (1.6) may look like, consider the following example.

Let

u0(x) =





1 : x < 0

1− x : 0 ≤ x < 1

0 : x ≥ 1,
(1.8)

i.e., there are initially no cars in x < 0 and a moderate traffic in x ≥ 1. What happens
for t > 0? It is easy to check that

u(x, t) =





1 : x < t
1−t−x
1−2t

: t ≤ x < 1− t

0 : x ≥ 1− t
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is a solution of (1.6)–(1.7) for x ∈ R, t < 1/2 which satisfies (1.4) pointwise except at
x = 1 and x = 1 − t (see Figure 1.2). The solution becomes discontinuous at t = 1.

1
4

1
2

1
2

t = 0

1

 t =  t =

0
1 x

Figure 1.2: Solution of (1.6)–(1.8).

The cars which were initially in (0, 1) drive from the left to the right until no cars were

remaining in that interval. As u = 0 in x < 0, no other cars are coming.

This gives rise to the following questions:

• Does there exist any solution for t ≥ 1/2?

• If yes, how does the solution for t ≥ 1/2 look like?

• How can we solve (1.6)–(1.7) for more complicated intial data numerically?

It is clear that we need some theory before we can turn to the numerical treatment of

hyperbolic conservation laws.

2 Mathematical theory for scalar conservation laws

In this section we study the problem

ut + f(u)x = 0, x ∈ R, t > 0, (2.1)

u(x, 0) = u0(x), x ∈ R, (2.2)

for some function f : R → R. This problem can be solved using the method of character-
istics.
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Definition 2.1 Let u : [0, T )→ R be a (classical) solution of (2.1)–(2.2). The solutions

χ of the initial-value problem

χ′(t) = f ′(u(χ(t), t)), t > 0, χ(0) = x0

are called the characteristics of (2.1).

The main property of the characteristics is that u is constant along them:

d

dt
u(χ(t), t) = ut(χ(t), t) + ux(χ(t), t)χ

′(t) = 0, t > 0,

and hence u(χ(t), t) = const. for t > 0.

Example 2.2 Let f(u) = u2/2. The characteristics of (2.1) are given as the solutions of

χ′(t) = u(χ(t), t), t > 0, χ(0) = x0.

As u(χ(t), t) = const. for t > 0, χ is a straight line in the (x, t)-plane through x0 with

slope 1/u0(χ(t)) = 1/u0(x0). Characteristics allow to illustrate the solutions of (1.6)–

(1.7) in a compact form. An example with u0 as in (1.8) is given in Figure 2.1. The

characteristics should not be confused with the vehicle trajectories; they rather illustrate

the “propagation” of the density values. ¤

0 1 x

1

Figure 2.1: Characteristics of (1.6)–(1.8).

Example 2.2 shows again that solutions of (2.1)–(2.2) may develop discontinuities after

finite time. Therefore we need a solution concept including discontinuous functions. For
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this, let u be a classical solution of (2.1)–(2.2); multiplying (2.1) by φ ∈ C1
0(R2) = {φ ∈

C1(R2) : φ has compact support} and integrating over R2 yields

0 =

∫ ∞

0

∫

R
(ut + f(u)x)φ dx dt

= −
∫ ∞

0

∫

R
(uφt + f(u)φx) dx dt−

∫

R
u(x, 0)φ(x, 0) dx.

In order to define the last two integrals we only need integrable functions u! This motivates

the following definition.

Definition 2.3 The function u : R× (0, T )→ R is called a weak solution of (2.1)–(2.2)

if for all φ ∈ C1
0(R2)

∫ ∞

0

∫

R
(uφt + f(u)φx) dx dt = −

∫

R
u0(x)φ(x, 0) dx.

Implicitely, this definition includes some regularity requirements on u (for instance,

integrability of u and f(u)), but we do not specify them. It is not difficult to check that

each classical solution is a weak solution, but the inverse does not need to be true.

Another weak formulation of (2.1) can be obtained as follows. Let u be a classical

solution of (2.1)–(2.2). Integrating (2.1) over (a, b) × (s, t) for any a, b ∈ R and s, t > 0
gives ∫ b

a

u(x, t) dx−
∫ b

a

u(x, s) dx = −
∫ t

s

f(u(b, τ)) dτ +

∫ t

s

f(u(a, τ)) dτ. (2.3)

Then we can say that u is a weak solution of (2.1)–(2.2) if u(·, 0) = u0 and (2.3) is satisfied

for all a, b ∈ R, s, t > 0. It is possible to prove that any weak solution in the sense of
Definition 2.3 also satisfies (2.3), but we do not present the (technical) proof.

We now consider conservation laws with special discontinuous initial data.

Definition 2.4 The problem (2.1)–(2.2) with initial datum

u0(x) =

{
u` : x < 0

ur : x ≥ 0
(2.4)

and u`, ur ∈ R is called a Riemann problem.

We want to solve the Riemann problem (2.1)–(2.2), (2.4). For this, we observe that

with u(x, t) also u(αx, αt) is a solution of (2.1)–(2.2), (2.4) for any α > 0. Therefore, u

only depends on ξ = x/t, i.e. u = u(ξ). This implies

0 = ut + f(u)x = − x
t2
u′(ξ) + f ′(u(ξ))u′(ξ)

1

t
=
1

t
u′(ξ)(f ′(u(ξ))− ξ).

Now several possibilities can occur:
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• u′(ξ) = 0 =⇒ u(ξ) = const.

• f ′(u(ξ)) = ξ =⇒ u(ξ) = (f ′)−1(ξ) (if the inverse of f ′ exists; a sufficient condition

is f ′′ > 0 in R).

• u is discontinuous along ξ = x/t, i.e., u′(ξ) does not exist.

This observation motivates to consider three cases:

Case 1: u` = ur. This gives the solution u(x, t) = ur = u` for all x ∈ R, t > 0.
Case 2: u` > ur. For f(u) = u2/2, a traffic flow interpretation is that the vehicle

density in x > 0 is larger than in x < 0. As the flow direction is from the left to the

right, we expect a shock line, i.e. a discontinuity curve x = ψ(t). We claim that the

discountinuous function

u(x, t) =

{
u` : x < st

ur : x ≥ st
(2.5)

is a weak solution of (2.1)–(2.2), (2.4). Then the discontinuity line is given by x = ψ(t) =

st and s = ψ′(t) is the shock speed which has to be determined. In order to prove our

claim let φ ∈ C1
0 (R2). Then, since u = const. except on x = st,

∫ ∞

0

∫

R
uφt dx dt =

∫ ∞

0

(∫ st

−∞

uφt dx+

∫ ∞

st

uφt dx

)
dt

=

∫ ∞

0

(
∂t

∫ st

−∞

uφ dx− s · u(st− 0, t)φ(st, t)

+ ∂t

∫ ∞

st

uφ dx+ s · u(st+ 0, t)φ(st, t)
)
dt

= −
∫

R
u(x, 0)φ(x, 0) dx− s · (u` − ur)

∫ ∞

0

φ(st, t) dt

and, by integration by parts,

∫ ∞

0

∫

R
f(u)φx dx dt =

∫ ∞

0

(
−
∫ st

−∞

f(u)xφ dx+ f(u(st− 0, t))φ(st, t)

−
∫ ∞

st

f(u)xφ dx− f(u(st+ 0, t))φ(st, t)
)
dt

= (f(u`)− f(ur))

∫ ∞

0

φ(st, t) dt.

We conclude
∫ ∞

0

∫

R
(uφt + f(u)φx) dx dt = −

∫

R
u0(x)φ(x, 0) dx

− [s · (u` − ur)− (f(u`)− f(ur))]

∫ ∞

0

φ(st, t) dt.
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Thus, choosing

s =
f(u`)− f(ur)

u` − ur
, (2.6)

we have proved the claim.

The choice (2.6) is called the Rankine-Hugoniot condition. For a Riemann problem,

s is always a constant, i.e., the discontinuity curve is always a straight line. This may

not be true for general initial data. In this situation, the Rankine-Hugoniot condition

generalizes to [4, Sec. 106]

s(t) = ψ′(t) =
f(u`(t))− f(ur(t))

u`(t)− ur(t)
, (2.7)

where

u`(t) = lim
x↗ψ(t)

u(x, t), ur(t) = lim
x↘ψ(t)

u(x, t). (2.8)

It can be shown that (2.5) is the unique weak solution of (2.1)–(2.2) (see Theorem 2.9).

Example 2.5 Let f(u) = u2/2 and u` = 0, ur = −1. Then the shock speed is s =
1
2
(u` + ur) = −1

2
, and the solution of (2.1)–(2.2), (2.4) is illustrated in Figure 2.2. The

traffic flow interpretation is the following. In x < st = −t/2, cars with a moderate density
are coming from the left and stop at the tailback at x = −t/2. In x > −t/2, the density
is maximal and the cars are bumper to bumper and are not moving. The shock line

x = −t/2 denotes the beginning of the tailback. ¤

t

x

Figure 2.2: Characteristics for (1.6)–(1.7) with u` = 0, ur = −1.

8



Case 3: u` < ur. For this case we assume that f
′′ > 0 in R. One solution is given by

(2.5), as the above proof does not need a sign on u` − ur:

u1(x, t) =

{
u` : x < st

ur : x ≥ st.

It can be shown that also

u2(x, t) =





u` : x < f ′(u`)t

(f ′)−1(x/t) : f ′(u`)t ≤ x ≤ f ′(ur)t

ur : x > f ′(ur)t

is a weak solution (motivated by the computation before Case 1; see Figure 2.3). In fact,

it is possible to show that the problem (2.1)–(2.2), (2.4) possesses infinitely many weak

solutions! (See, for instance, [5, Sec. 3.5].) What is the physically relevant solution? We

present two approaches.

t

x
0

t

x
0

Figure 2.3: Characteristics for (2.1)–(2.2), (2.4) with f(u) = u2/2 and u` = 0, ur = 1,

corresponding to u1 (left) and u2 (right).

In the traffic flow interpretation, the condition u` < ur means that there are more cars

(per kilometer) in {x < 0} than in {x > 0}. The solution u1 would mean that all cars

in {x < st} drive with the same velocity v(u`) = vmax(1 + u`)/2, whereas all drivers in

{x > st} move with the velocity v(ur) > v(u`), and there is a shock at x = st. It would

be more realistic if the drivers just before the shock line (x < 0) tried to drive as fast as

the drivers behind the shock (x > 0). After some time there are drivers with velocities

v(u`) and v(ur) far away from x = 0 and some drivers with velocities between v(u`) and

v(ur) near x = 0. Thus, u2 seems to be the preferable physical solution. The solution u2

is called rarefaction wave.

Is it possible to formulate a general principle which allows to select the physically

correct solution? The answer is yes and this leads to the notion of entropy condition.
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Definition 2.6 A weak solution u : R × (0, T ) → R of (2.1)–(2.2), (2.4) satisfies the

entropy condition of Oleinik if and only if along each discontinuity curve x = ψ(t),

f(u`(t))− f(v)

u`(t)− v
≥ ψ′(t) ≥ f(ur(t))− f(v)

ur(t)− v
(2.9)

for all t ∈ (0, T ) and for all v between u`(t) and ur(t), where u`(t), ur(t) are defined in

(2.8).

Does u1 satisfy the entropy condition (2.9)? Since

ψ′(t) = s(t) =
f(ur)− f(u`)

ur − u`

and f is assumed to be strictly convex, we obtain for any u` < v < ur

f(u`)− f(v)

u` − v
<
f(u`)− f(ur)

u` − ur
= s <

f(ur)− f(v)

ur − v
,

which contradicts (2.9). Thus, u1 does not satisfy the entropy condition (2.9). The

function u of Case 2, defined in (2.5), however, satisfies (2.9) (if f is convex). As the

function u2 is continuous, we do not need to check (2.9) for this function.

The second approach uses the notion of entropy. We call a function η ∈ C2(R) an
entropy and ψ ∈ C1(R) an entropy flux if and only if η is strictly convex and if for any

classical solution u of (2.1)–(2.2) it holds

η(u)t + ψ(u)x = 0, x ∈ R, t > 0. (2.10)

The idea of the second approach is to consider the conservation law as an idealization of

a diffusive problem given by the equation

ut + f(u)x = εuxx, x ∈ R, t > 0, (2.11)

where ε > 0 is the diffusion coefficient. This equation, together with the initial condition

(2.2) has a unique smooth solution uε (by the theory of parabolic differential equations),

and we assume that

uε → u pointwise in R× (0, T ) for ε→ 0,

‖η′(uε)uε,x‖L1(R×(0,T )) ≤ c,
(2.12)

where the constant c > 0 is independent of ε. The limit ε → 0 is called the vanishing

viscosity limit. It is possible to prove that u is a solution of (2.1)–(2.2), and we say that

u is the physically relevant solution.

Then something happens with the entropy equation (2.10). We multiply (2.11) by

η′(uε) and choose ψ
′ = f ′ · η′:

η(uε)t + ψ(uε)x = εη′(uε)uε,xx = ε(η′(uε)uε,x)x − εη′′(uε)u
2
ε,x.
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Multiplying this equation by φ ∈ C1
0 (R×R), φ ≥ 0, and integrating over R× (0,∞) gives:

∫ ∞

0

∫

R
(η(uε)t + ψ(uε)x)φ dx dt

= −ε
∫ ∞

0

∫

R
η′(uε)uε,x φx dx dt− ε

∫ ∞

0

∫

R
η′′(uε)u

2
ε,x φ dx dt

≤ ε‖η′(uε)uε,x‖L1(R×(0,∞)) ‖φx‖L∞(R×(0,∞))

→ 0 (as ε→ 0),

using η′′(uε) > 0 and (2.12). As φ is arbitrary, we deduce the entropy inequality

η(u)t + ψ(u)x ≤ 0.

Clearly, this only holds for smooth solutions. From the definition of weak solutions follows

that the entropy inequality for weak solutions writes
∫ ∞

0

∫

R
(η(u)φt + ψ(u)φx)dx dt ≥ −

∫

R
η(u0(x))φ(x, 0) dx ∀φ ∈ C1

0 (R2). (2.13)

We define:

Definition 2.7 Let u : R×(0, T )→ R be a weak solution of (2.1)–(2.2). Then u is called

an entropy solution if and only if for all convex entropies η and corresponding entropy

fluxes ψ, the inequality (2.13) holds.

The function u2 satisfies the entropy equation (2.10) almost everywhere since u2 is

continuous and we can define the derivatives in a weak sense (it is also possible to prove

(2.10) in the weak form similarly to (2.13)). Thus, u2 is an entropy solution. Does this

also hold for u1? We give the (negative) answer in the following example.

Example 2.8 Let f(u) = u2/2, η(u) = u2 (hence, ψ(u) = (2/3)u3), and let φ ∈ C1
0 (R2),

φ ≥ 0. Then, since s = (u` + ur)/2,
∫ ∞

0

∫

R
(u2

1φt +
2

3
u3

1φx)dx dt

=

∫ ∞

0

(
∂t

∫ st

−∞

u2
1φ dx− su2

`φ(st, t) + ∂t

∫ ∞

st

u2
1φ dx+ su

2
rφ(st, t)

+
2

3
u3
`φ(st, t)−

2

3
u3
rφ(st, t)

)
dt

= −
∫

R
u0(x)

2φ(x, 0) dx− 1
2
(u` + ur)(u

2
` − u2

r)

∫ ∞

0

φ(st, t) dt

+
2

3
(u3

` − u3
r)

∫ ∞

0

φ(st, t) dt

= −
∫

R
u0(x)

2φ(x, 0) dx+
1

6
(u` − ur)

3

∫ ∞

0

φ(st, t) dt

≥ −
∫

R
η(u0(x))φ(x, 0) dx

11



if and only if u` ≥ ur. Thus, u1 is not an entropy solution. ¤

Example 2.8 shows that the two equations

ut +

(
u2

2

)

x

= 0 and (u2)t +
2

3
(u3)x = 0

are equivalent only for classical solutions.

The above considerations motivate that only rarefaction waves u2 are the physically

relevant solutions of the Riemann problem (2.1)–(2.2), (2.4) if u` < ur. For u` > ur we

have to expect discontinuous solutions with shocks. We summarize the above results in

the following theorem.

Theorem 2.9 Let f ∈ C2(R) with f ′′ > 0 in R.

(1) Let u` > ur and set s = (f(u`)− f(ur))/(u` − ur). Then

u(x, t) =

{
u` : x < st

ur : x > st

is a weak solution of (2.1)–(2.2), (2.4) satisfying the entropy condition (2.9) of

Oleinik.

(2) Let u` < ur. Then

u(x, t) =





u` : x < f ′(u`)t

(f ′)−1(x/t) : f ′(u`)t ≤ x ≤ f ′(ur)t

ur : x > f ′(ur)t

is a weak entropy solution of (2.1)–(2.2), (2.4).

Above we have written that the problem (2.1)–(2.2), (2.4) with u` < ur possesses in-

finitely many solutions and that the solution u1 does neither satisfy the entropy condition

of Oleinik nor is an entropy solution. However, is u2 the only solution satisfying (2.9) and

(2.13)? The answer is affirmative but not easy to see, so we only cite the result (see [6]):

Theorem 2.10 Let f ∈ C∞(R) and u0 ∈ L∞(R). Then there exists at most one entropy

solution of (2.1)–(2.2) satisfying the entropy condition (2.9).

3 Traffic flow models

We present some simple traffic flow models. The first model has been already presented

in Section 1:
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(1) Lighthill-Whitham-Richards model:

ρt + (ρv(ρ))x = 0, v(ρ) = vmax

(
1− ρ

ρmax

)
, 0 ≤ ρ ≤ ρmax.

In Section 1 we have shown that this equation can be simplified by means of the

transformation u = 1− 2ρ/ρmax to

ut +
1

2
(u2)x = 0. (3.1)

(2) Greenberg model: In this model it is assumed that the velocity of the vehicles can

be very large for low densities:

ρt + (ρv(ρ))x = 0, v(ρ) = vmax ln
ρmax

ρ
, 0 < ρ ≤ ρmax.

This implies

ρt − vmax(ρ ln ρ)x = 0.

(3) Payne-Whitham model:

ρt + (ρv)x = 0, (ρv)t + (ρv
2 + p(ρ))x = 0.

This model mimics the flow of gas particles. In fact, the above equations are known

as the Euler equations of gas dynamics with pressure p(ρ) = aργ, a > 0, γ ≥ 1. The
disadvantage of this model is that there may be solutions for which the velocity v

is negative [3].

(4) Aw-Rascle model:

ρt + (ρv)x = 0, (ρv + ρp(ρ))t + (ρv
2 + ρvp(ρ))x = 0.

This model has been proposed as an improvement of the Payne-Whitham model [1].

It has been derived from microscopic models [2].

In the following, we will consider the Lighthill-Whitham-Richards model in some de-

tail. More precisely, we want to study the influence of a temporal disturbance due to a

traffic interruption (for instance, a traffic light). Suppose that the highway is initially

filled with cars with uniform density ρ in the interval (−∞, 0), that there is a red light

at x = 0, and that the highway is empty in (0,∞). We work with the transformed equa-
tion (3.1) and the uniform density u = 1 − 2ρ/ρmax. Clearly, there will be a tailback in

front of the traffic light. At time t = ω, the traffic light changes from red to green, and

13



the cars move from the left to the right. We want to know what happens with the tailback

at time t > ω.

First step: red phase (0 ≤ t < ω). We solve the Burgers equation (3.1) for x < 0 with

the initial function u0(x) = u, x < 0, and boundary condition u(0, t) = −1 (which models
the red traffic light). The solution is (see Figure 3.1)

u(x, t) =

{
u : x < st

−1 : x > st,

where x < 0, 0 < t < ω, and the shock speed s equals

s =
u` + ur
2

=
u− 1
2

.

The solution for x > 0 is given by assumption by u(x, t) = 1, x > 0, 0 < t < ω.

t1

u = u

u = u
s x

u=−1
u=1

u=1

u=1

wu=−1

sw

green

red

phase

phase

t1

t

Figure 3.1: Characteristics for the traffic flow problem.

Second step: green phase (t ≥ ω). We solve the Burgers equation (3.1) in R, with
initial datum u0(x) = u(x, ω). Since u` = u > −1 = ur we get a shock ψ(t) = st,

t > ω, with speed s = (u − 1)/2 < 0. A rarefaction wave develops at x = 0, since

u` = −1 < 1 = ur. The solution is given by

u(x, t) =





u : x < st,

−1 : st ≤ x < ω − t,
x
t−ω

: ω − t ≤ x ≤ t− ω,

1 : x > t− ω,
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x ∈ R, t > ω. This solution makes sense as long as st < ω − t or, equivalently, t < t1 :=

ω/(s+ 1) = 2ω/(u+ 1).

Third step: green phase (t > t1). What happens with the shock for t > t1? The shock

speed is given by the generalized Ranking-Hugoniot condition (2.7):

s(t) = ψ′(t) =
1

2
(u(ψ(t) + 0, t) + u(ψ(t)− 0, t))

=
1

2

(
ψ(t)

t− ω
+ u

)
, t > t1.

This is a linear ordinary differential equation with inital condition

ψ(t1) = st1 = ω
u− 1
u+ 1

.

The solution is

ψ(t) = u(t− ω)−
√
t− ω

√
ω(1− u2), t ≥ t1.

Now there are two cases. If u ≤ 0, ψ(t) → −∞ as t → ∞, i.e., there is a shock for
all time and the shock moves into the negative x-direction with shock speed ψ ′(t) → u

(t → ∞). The velocity of the shock line is thus reduced from s = (u − 1)/2 to u ≥ s.

Clearly, the discontinuity step at ψ(t) goes to zero as t → ∞. However, the drivers
observe the shock even a long time after the traffic disturbance. This agrees with practical

experience.

ψ(t)
ψ(t)

slope

t t

t 2

0 0

t t

xx

slope
1/s

1/ u

1 1

Figure 3.2: Shock curve ψ(t) for u ≤ 0 (left) and u > 0 (right).

In the other case, u > 0, ψ(t) → ∞ as t → ∞, i.e., the shock line moves into the
positive x-direction. Suppose that after the time t = 2ω the traffic light changes from

green to red. How long should the green phase be to eliminate the shock, i.e., we need

t2 ≤ 2ω where ψ(t2) = 0. The equation ψ(t2) = 0 has the (unique) solution t2 = ω/u2.
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Thus, t2 ≤ 2ω is satisfied if and only if u ≥ 1/
√
2. The tailback in front of the traffic light

will vanish during the green phase if and only if u ≥ 1/
√
2 or, in original density,

ρ ≤ ρ0 :=
ρmax

2

(
1− 1√

2

)
≈ 0.146ρmax,

independently of the length of the green phase! Even for moderate vehicle density ρ > ρ0,

the tailback in front of the traffic light will become larger and larger as time increases.

4 Numerical approximation of scalar conservation

laws

Before studying numerical methods for nonlinear scalar equations we start with a very

simple linear equation:

ut + aux = 0, x ∈ R, t > 0, (4.1)

u(x, 0) = u0(x), x ∈ R, (4.2)

where a > 0. This problems has the explicit solution u(x, t) = u0(x− at) which is a weak
solution (at least if u0 is “smooth” enough).

We discretize the (x, t)-plane by the mesh (xi, tn) with

xi = ih (i ∈ Z), tn = nk (n ∈ N0)

and h, k > 0. For simplicity of presentation we take a uniform mesh with h and k constant,

but the discussed methods can be easily extended to non-uniform meshes. We are looking

for finite difference approximations uni to the solution u(xi, tn) at the discrete grid points.

The idea is to replace the partial derivatives in (4.1) by difference quotients. For example,

(4.1) can be written by Taylor expansion as

u(xi, tn+1)− u(xi, tn)

k
+O(k) = −a u(xi+1)− u(xi−1)

2h
+O(h2), (4.3)

which motivates the first numerical scheme:

Central scheme: Consider the approximation of (4.3)

un+1
i − uni
k

= −a u
n
i+1 − uni−1

2h
, n ≥ 0, i ∈ Z.

We can write this scheme as

un+1
i = uni −

ak

2h
(uni+1 − uni−1). (4.4)
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As we can compute un+1
i from the data uni explicitely, this is an explicit scheme. Another

idea would be to use the scheme

un+1
i − uni
k

= −a u
n+1
i+1 − un+1

i−1

2h

or, equivalently,
ak

2h
un+1
i+1 + u

n+1
i − ak

2h
un+1
i−1 = uni .

This is an implicit scheme. In each time step, a linear system has to be solved. As for

time-dependent hyerbolic equations, implicit schemes are rarely used, we consider in the

following only explicit schemes.

In practice we must compute on a finite spatial domain, say 0 ≤ x ≤ Nh, and we

require appropriate boundary conditions at x = 0, x = Nh, respectively. For the above

equation we choose periodic boundary conditions

u(0, t) = u(Nh, t), t > 0,

or, for the approximations uni ,

un0 = unN , n ≥ 0.

We can determine un0 and unN using (4.4). In fact, setting i = 0 or i = N in (4.4)

would require to determine un−1 or u
n
N+1, We consider these points as artificial points with

un−1 = unN−1 and u
n
N = uN0 , by the periodicity. Therefore, our central scheme reads as

follows

u0
i = u0(xi), i = 0, . . . , N,

un+1
i = uni −

ak

2h
(uni+1 − uni−1), i = 1, . . . , N − 1,

un+1
0 = un0 −

ak

2h
(un1 − unN−1),

un+1
N = unN −

ak

2h
(un1 − unN−1).

Thus, if un0 = unN then u
n+1
0 = un+1

N , and the periodicity is preserved. This scheme has

the advantage that it is mass-preserving, i.e.

N−1∑

i=0

uni =
N−1∑

i=0

u0(xi), n ≥ 0.
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Indeed,

N−1∑

i=0

un+1
i =

N−1∑

i=1

[
uni −

ak

2h
(uni+1 − uni−1)

]
+ un0 −

ak

2h
(un1 − unN−1)

=
N−1∑

i=0

uni −
ak

2h

(
N−1∑

i=0

uni+1 −
N∑

i=1

uni−1

)

=
N∑

i=0

uni −
ak

2h
(unN − un0 )

=
N∑

i=0

uni .

Figure 4.1 (first row, left) shows the numerical solution using the above central scheme

for a = 1, h = 0.01, N = 100, k = 0.001, with initial data

u0(x) = sin(2πx), 0 ≤ x ≤ 1, (4.5)

at time t = 0 (broken line) and t = 0.25 (solid line). The result is an approximation

of sin(2π(x − 0.25)). We see that the solution is oscillating. This can be improved by
using an arithemetic average in the approximation of the time derivative and leads to the

following scheme.

Lax-Friedrichs scheme. In this scheme the time derivative is approximated by

1

k

(
u(x, t+ k)− 1

2
(u(x+ h, t) + u(x− h, t))

)
,

i.e.

un+1
i =

1

2
(uni+1 + u

n
i−1)−

ak

2h
(uni+1 − uni−1), i = 1, . . . , N − 1. (4.6)

The initial and boundary data are approximated by the same idea as for the central

scheme. It is not difficult to check that the Lax-Friedrichs scheme is mass-preserving.

Its numerical solution in Figure 4.1 (first row, right) with the same parameters as above

shows that there are no oscillations, but now the solution is too smeared out. What

happened?

We use the exact solution in the scheme (4.6) to compute the so-called truncation

error

TE(x, t) =
1

k

(
u(x, t+ k)− 1

2
(u(x+ h, t) + u(x− h, t))

)
+

a

2h
(u(x+ h, t)− u(x− h, t)).
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Figure 4.1: Various numerical schemes for (4.1) with a = 1, h = 0.01, k = 0.001 and

smooth initial data (4.5). The numerical solution for t = 0 (broken line) and t = 0.25 (solid

line) is shown. First row: central (left), Lax-Friedrichs (right); second row: downwind

(left), upwind (right); last row: upwind but with h = 0.002 (left) and k = 0.0025 (right).

A Taylor expansion yields at (x, t)

TE =
1

k

[(
u+ utk +

1

2
uttk

2 +O(k3)

)
− 1
2

(
2u+ uxxh

2 +O(h4)
)]

+
a

2h
(2uxh+O(h

3))

= ut + aux +
1

2

(
uttk − uxx

h2

k

)
+O(k2) +O

(h4

k

)
+O(h2).

Since utt = −auxt = a2uxx and assuming that k/h = const., we conclude

TE(x, t) =
k

2

(
a2 −

(h
k

)2)
uxx(x, t) +O(h

2) = O(k). (4.7)
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This shows first that the Lax-Friedrichs scheme is a first-order method (as the truncation

error satisfies |TE(x, t)| ≤ Ck for all (x, t)) and second that we approximate up to an

error of the form kuxx. Now, spatial second derivatives are modeling diffusion phenom-

ena, and we expect the discrete solutions to be smeared out—justified by the numerical

experiments. The numerical solution generated by the Lax-Friedrichs scheme can serve

as an approximation of the advection-diffusion equation

ut + aux = −
k

2

(
a2 −

(h
k

)2)
uxx, x ∈ R, t > 0.

For h→ 0 and k → 0, the solutions of this modified equation converge (at least formally)

to the solution of ut + aux = 0. This is related to the vanishing viscosity limit discussed

in Section 3. The Lax-Friedrichs approximation becomes better and better for smaller

k > 0. Moreover, the artificial diffusion (also called artificial viscosity) avoids oscillations.

Downwind scheme. The Lax-Friedrichs scheme gives accurate approximations only if

k (or, equivalently, h if k/h = const.) is sufficiently small. One-sided finite difference ap-

proximations avoid too much artificial diffusion. Therefore, we choose the approximation

un+1
i = uni −

ak

h
(uni+1 − uni ), i = 0, . . . , N − 1,

with initial and periodic boundary conditions analogously as above. Also this scheme is

mass-preserving. The numerical solution shows that the scheme is unstable (Figure 4.1

(second row, left); same parameters as above). Why? The solution describes a “wave”

from the left to the right. The spatial derivative at xi, however, uses the information at

xi+1 where the “wave” will go in the next time step. This does not make sense. In fact,

the above scheme is useless. It would be more reasonable to use the information at xi−1

where the “wave” comes from. This is done in the following scheme.

Upwind scheme. This scheme reads as follows

un+1
i = uni −

ak

h
(uni − uni−1), i = 1, . . . , N. (4.8)

Again, the scheme is mass-preserving. Its numerical solution with the same parameter

values as in the previous schemes in Figure 4.1 (second row, right) shows the correct

solution, no oscillations, but with artificial diffusion. In fact, the truncation error

TE(x, t) =
1

k
(u(x, t+ k)− u(x, t)) +

a

h
(u(x, t)− u(x− h, t))

can be written as

TE(x, t) =
ak

2

(
a− h

k

)
uxx +O(h

2) +O(k2). (4.9)
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The corresponding equation with artificial diffusion reads here:

ut + aux = −
ah

2

(
a− h

k

)
uxx. (4.10)

For the values of a, k and h used here, the diffusion term is 0.0045uxx, whereas the cor-

responding term in the Lax-Friedrich scheme is 0.0495uxx. Thus, we expect upwind to

be less diffusive than Lax-Friedrichs, as confirmed by the numerical experiments. Choos-

ing h > 0 smaller, the diffusion becomes less apparent and for h = 0.002 the numerical

solution is close to the exact solution (Figure 4.1 (last row, left)).

For small k > 0, we need a lot of time steps to compute the solution at a certain

fixed time. Can we accelerate the computations by choosing k larger? Figure 4.1 (last

row, right) shows the result for h = 0.01 and k = 0.0025 (a and u0 are as above). Thus,

the answer is no. Why? The modified equation (4.10) is well-posed only if the diffusion

coefficient is non-negative:

−ah
2

(
a− h

k

)
≥ 0 ⇐⇒ ak

h
≤ 1. (4.11)

In the converse case we do not have diffusion but concentration. In the above situation

we have ak/h = 2.5 > 1, and we expect the solution to break down after some time.

The condition (4.11) is known as the Courant-Friedrich-Levy (CFL) condition. Strictly

speaking, the CFL condition is not defined by (4.11) but equivalent to it, and we will

identify the CFL condition and (4.11). This condition imposes a severe restriction on the

choice of the time step; the more accurate the solution is computed (we mean: h > 0

small), the smaller k > 0 has to be chosen and the longer the computations take.

In Figure 4.2 we illustrate the described behavior using discontinuous initial data

u0(x) =

{
1 : 0 ≤ x < 1/2

0 : 1/2 ≤ x ≤ 1
(4.12)

and the parameters a = 1, t = 0.25, k = 0.001. We restrict the computational domain to

[0, 1]. We do not choose periodic boundary conditions here, but inflow- and outflow-type

conditions. In the traffic flow interpretation, the traffic is heavy in [0, 1/2) and light in

[1/2, 1]. So, at x = 0, cars are entering the domain and are leaving at x = 1. Hence, in

the discrete formulation,

un+1
1 = un0 and un+1

N = unN−1, n ≥ 0. (4.13)

We observe again that the central scheme is oscillatory with damped oscillations for

smaller k (Figure 4.2 (first row, left); h = 0.01); the Lax-Friedrichs scheme is quite

diffusive but not oscillatory (Figure 4.2 (first row, right)); and the upwind scheme is less

diffusive than the Lax-Friedrichs scheme (Figure 4.2 (last row, left)). Choosing the mesh
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Figure 4.2: Various numerical schemes for (4.1) with a = 1 and discontinous data (4.12).

First row, left: central; first row, right: Lax-Friedrichs; last row, left: upwind; last row,

right: Lax-Friedrichs (broken line) and upwind (solid line) for h = 0.001, k = 0.001.

size h = k = 0.01, both schemes produce a solution which is very close to the exact

solution (Figure 4.2 (last row, right)). This is clear since for this choice, a − h/k = 0

holds and thus, the artificial diffusion in (4.7) and (4.9) vanishes. All these schemes are

able to compute the correct shock speed.

Summarizing the above results we observe that the central scheme tends to produce

oscillations whereas the other diffusive schemes have usually too much artificial viscosity

except for special mesh sizes.

The traffic flow models are nonlinear, so we want to study what can happen when we

discretize nonlinear equations. We choose the scaled Lighthill-Whitham-Richards model

(which is the same as the inviscid Burgers equation)

ut + uux = 0, x ∈ R, t > 0, (4.14)

u(x, 0) = u0(x), x ∈ R, (4.15)
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with initial data (4.12). A “natural” generalization of the linear upwind scheme could be

un+1
i = uni −

k

h
uni (u

n
i − uni−1), t ∈ Z, n ≥ 0.

Since u0
i = 0 if i ≥ N/2 and u0

i − u0
i−1 = 0 for i < N/2, u1

i = u0
i for all i. This happens

in every time step and so uni = u0
i for all i. As the grid is refined, the numerical solution

converges to the function u(x, t) = u0(x). This is not a weak solution of (4.14)–(4.15)!

One might think that the upwind scheme

un+1
i = uni −

k

h
uni−1(u

n
i − uni−1), i ∈ Z, n ≥ 0, (4.16)

gives better results since here we use the information from the left where the “wave” is

coming from. The numerical solution of this scheme (with boundary conditions (4.13)

and k = 0.001, t = 0.5) is depicted in Figure 4.3 (left). For smaller mesh size, the

numerical solution converges nicely to a function of type u0(x − at). The exact solution

of (4.14)–(4.15), (4.12) is

u(x, t) =

{
1 : x < st

0 : x > st

with s = 1
2
(u` + ur) =

1
2
. At t = 1

2
, the discontinuity should be at x = 3

4
. Thus, the

numerical solution propagates with the wrong speed!
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Figure 4.3: Exact and numerical solutions for the inviscid Burger equation using the

upwind scheme (4.16) (left) and the Lax-Friedrichs scheme (4.17) (right).

A better behavior is given by the Lax-Friedrichs scheme

un+1
i =

1

2
(uni+1 + u

n
i−1)−

k

4h

(
(uni+1)

2 − (uni−1)
2
)
, i ∈ Z, n ≥ 0. (4.17)
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From Figure 4.3 (right) we see that the scheme is non-oscillatory and the shock speed is

correct.

What is the reason for the different shock speeds? The upwind scheme (4.16) is a

discretization of the quasilinear equation

ut + uux = 0,

whereas the scheme (4.17) is an approximation of the equation in conservation form

ut +

(
u2

2

)

x

= 0.

For smooth solutions both equations are the same, but we know from Section 2 (see, for

instance, Example 2.8) that this may not be true for weak solutions.

In the following we consider only numerical methods being in conservation form, mean-

ing that the scheme is of the form

un+1
i = uni −

k

h
[F (uni−p, . . . , u

n
i+q)− F (uni−1−p, . . . , u

n
i−1+q)]

for some function F of p+ q + 1 arguments. We call F the numerical flux function. The

simplest case is for p = 0 and q = 1, where

un+1
i = uni −

k

h
[F (uni , u

n
i+1)− F (uni−1, u

n
i )]. (4.18)

This expression can be interpreted as a cell average. More precisely, we know that the

weak solution of

ut + f(u)x = 0, x ∈ R, t > 0, (4.19)

satisfies the integral form

1

h

∫ xi+1/2

xi−1/2

u(x, tn+1) dx =
1

h

∫ xi+1/2

xi−1/2

u(x, tn) dx (4.20)

− k

h

[
1

k

∫ tn+1

tn

f(u(xi+1/2, t)) dt−
1

k

∫ tn+1

tn

f(u(xi−1/2, t)) dt

]
,

where xi±1/2 = (i± 1/2)h denotes the cell middle points (see Figure 4.4). Interpretating
uni as approximations of the cell averages,

uni ∼
1

h

∫ xi+1/2

xi−1/2

u(x, tn) dx,

and F (uni , u
n
i+1) as approximations of the average flux through xi+1/2 over the time interval

(tn, tn+1),

F (uni , u
n
i+1) ∼

1

k

∫ tn+1

tn

f(u(xi+1/2, t)) dt,

we obtain the approximation (4.18) from (4.20).

We give now some examples of numerical methods in conservation form:
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Figure 4.4: The spatial mesh.

Example 4.1

(1) Lax-Friedrichs scheme:

un+1
i =

1

2
(uni+1 + u

n
i−1)−

k

2h
(f(uni+1)− f(uni−1)).

This method can be written in the conservation form (4.18) by taking

F (uni , u
n
i+1) =

h

2k
(ui − ui+1) +

1

2
(f(ui) + f(ui+1)).

It can be proved that this scheme is a first-order method (i.e., the truncation error

TE satisfies |TE| = O(k) as k → 0).

(2) Lax-Wendroff scheme:

un+1
i = uni −

k

2h
(f(uni+1)− f(uni−1))

+
k2

2h2
[f ′(uni+1/2)(f(u

n
i+1)− f(uni ))− f ′(uni−1/2)(f(u

n
i )− f(uni−1))],

where uni±1/2 =
1
2
(uni + u

n
i±1/2). This is a second-order method (i.e. |TE| = O(k2) as

k → 0). It has the disadvantage that it requires evaluating f ′ in two points at each

time step which is expensive when we deal with systems of conservation laws (and

f ′ is the Jacobi matrix). This is avoided in the following schemes.

(3) Richtmyer two-step Lax-Wendroff scheme:

u∗i =
1

2
(uni + u

n
i+1)−

k

h
[f(uni+1)− f(uni )],

un+1
i = uni −

k

h
[f(u∗i )− f(u∗i−1)].

This is a second-order method. Notice that the derivation of the local truncation

error TE(x, t) needs smooth solutions, so all these second-order methods are of

second order for smooth solutions. The methods are usually only of first order

around shocks.
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(4) Mac-Cornack scheme:

u∗i = uni −
k

h
[f(uni+1)− f(uni )],

un+1
i =

1

2
(uni + u

∗
i )−

k

h
[f(u∗i )− f(u∗i−1)].

This scheme uses first forward differencing and then backward differencing. It is also

a second-order method. Notice that the schemes (2)–(4) reduce to the Lax-Wendroff

method if f is linear.

All the described schemes in Example 4.1 yield numerical solutions which converge to

a weak solution of (4.19) if the mesh discretization parameters h and k tend to zero. In

order to formulate this result more generally we need the following definitions. From now

on, we assume that f : Rn → Rn is a vector-valued function, i.e., we consider systems of

conservation laws (4.19).

Definition 4.2 (1) A difference scheme of the form

un+1
i = uni −

k

h
[F (uni−p, . . . , u

n
i+q)− F (uni−1−p, . . . , u

n
i−1+q)]

for some function F : (Rn)p+q+1 → Rn is called conservative.

(2) A conservative scheme is called consistent if F is locally Lipschitz continuous and

F (u, . . . , u) = f(u) ∀ u ∈ R.

(3) The total variation TV (v) of a function v : R → Rn is defined by

TV (v) = sup
N∑

i=1

|v(ξi)− v(ξi−1)|,

where the supremum is taken over all subdivisions −∞ = ξ0 < ξ1 < . . . < ξn = ∞
of the real line.

Notice that for the total variation to be finite v must approach constant values as x→ ±∞.
For differentiable v the definition reduces to

TV (v) =

∫

R
|v′(x)| dx.

Theorem 4.3 (Lax-Wendroff) Let uj(x, t) be a numerical solution computed with a con-

sistent and conservative method on a mesh with mesh size hj and time step kj, with

hj, kj → 0 as j →∞. (The function uj can be, for instance, the constant extension of uni
in the cells.) Assume that there exists a function u(x, t) such that
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(1) for all a, b ∈ R, T > 0,

∫ T

0

∫ b

a

|uj(x, t)− u(x, t)| dxdt→ 0 as j →∞,

(2) for all T > 0 there is a number K > 0 such that

TV (uj(·, t)) ≤ K ∀ 0 ≤ t ≤ T, j ∈ N.

Then u(x, t) is a weak solution of (4.19).

For the proof we refer to [5, Sec. 12]. Theorem 4.3 does not guarantee that weak

solutions obtained in this way satisfy the entropy condition. This is true under the

following additional condition.

Theorem 4.4 Let (η, ψ) be an entropy-entropy flux pair such that η ′′(u) > 0 and η′(u)

div f(u) = divψ(u) for all u ∈ Rn. Furthermore, let Ψ be a numerical flux function

consistent with ψ in the sense of Definition 4.2 (2). Let the assumptions of Theorem 4.3

hold and, additionally,

η(un+1
i ) ≤ η(uni )−

k

h
[Ψ(uni−p, . . . , u

n
i+q)−Ψ(uni−1−p, . . . , u

n
i−1+q)]

for all i, n. Then u(x, t) (obtained in Theorem 4.3) satisfies the entropy inequality (2.13).

Again, we refer to [5, Sec. 12] for a proof.

5 The Gudonov method

In Section 4 we have seen that a nonlinear conservation law (or a system of conservation

laws) can be numerically approximated by the Lax-Friedrichs scheme. For the linear

advection equation (4.1) we have also seen that the Lax-Friedrichs scheme is generally

more dissipative than the upwind method and gives less accurate solutions. In the scalar

case, a natural generalization of the upwind scheme (4.8) is

un+1
i = uni −

k

h
[F (uni , u

n
i+1)− F (uni−1, u

n
i )] (5.1)

with

F (v, w) =

{
f(v) : (f(v)− f(w))/(v − w) ≥ 0
f(w) : (f(v)− f(w))/(v − w) < 0.
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For linear equations, F (v, w) = f(v) and (5.1) reduces to (4.8). However, the above

scheme may not give the correct approximation. For instance, let f(u) = u2/2 and choose

the initial data

u0
i =

{
−1 : i ≤ 0
+1 : i > 0.

Since F (u0
i , u

0
i+1) and F (u

0
i−1, u

0
i ) are either equal to f(−1) or f(1) and since f(−1) = f(1),

we obtain u1
i = u0

i for all i and hence u
n
i = u0

i for all i. This is not the correct discrete

solution.

In this section we derive a conservative and consistent generalization of the upwind

scheme which avoids the above problem, the so-called Gudonov scheme. Let f be a

convex C2 function. The idea of the method is to approximate the solution u(x, tn) of the

conservation law (scalar or system)

ut + f(u)x = 0, x ∈ R, t > 0,

by a piecewise constant function ũn(x, tn) and to determine the approximate solution

ũn(x, t) by solving the Riemann problem in the interval t ∈ [tn, tn+1]. After obtaining this

solution, we define the approximate solution un+1
i at time tn+1 by averaging this exact

solution at time tn+1:

un+1
i =

1

h

∫ xi+1/2

xi−1/2

ũn(x, tn+1) dx, (5.2)

where xi±1/2 = (i±1/2)h. These values are then used to define the new piecewise constant
data ũn+1(x, tn+1) by

ũn+1(x, tn+1) = un+1
i if xi−1/2 ≤ x < xi+1/2,

and the process repeats.

In practice, this algorithm is considerably simplified since the above integral can be

computed explicitely. Since ũn is assumed to be the exact weak solution, it satisfies the

integral formulation (2.3) divided by h:

1

h

∫ xi+1/2

xi−1/2

ũn(x, tn+1) dx

=
1

h

∫ xi+1/2

xi−1/2

ũn(x, tn) dx

− k

h

[
1

k

∫ tn+1

tn

f(ũn(xi+1/2, t)) dt−
1

k

∫ tn+1

tn

f(ũn(xi−1/2, t)) dt

]
.

From (5.2) follows

un+1
i = uni −

k

h

[
F (uni , u

n
i+1)− F (uni−1, u

n
i )
]
, (5.3)
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where the numerical flux function F is given by

F (uni , u
n
i+1) =

1

k

∫ tn+1

tn

f(ũn(xi+1/2, t)) dt.

Thus, the Gudonov scheme is conservative (see Definition 4.2). The function ũn is constant

on the line x = xi+1/2, tn ≤ t ≤ tn+1 (see Figure 5.1). We denote this value by u
∗(uni , u

n
i+1).

u n~
(x,t)

xt n

t n+1

x i-1/2 x i+1/2

u i

u i-1 u i+1
n

n n

(t)ψ

w(t)

Figure 5.1: Illustration for the Gudonov scheme. There is a shock through xi−1/2 and a

rarefaction wave starting at xi+1/2.

Then the flux reduces to

F (uni , u
n
i+1) = f(u∗(uni , u

n
i+1))

and the Gudonov scheme becomes

un+1
i = uni −

k

h
[f(u∗(uni , u

n
i+1))− f(u∗(uni−1, u

n
i ))].

The scheme is consistent (see Definition 4.2) since F (uni , u
n
i ) = f(uni ) and f is assumed

to be smooth.

There are two questions remaining:

• For large t−tn, the solution may not remain constant at xi+1/2 because of the effects

of waves arising from neighboring Riemann problems. How large can k = tn+1 − tn

be chosen?

• How can we determine u∗ from uni , u
n
i+1?

We answer the first question. Assume the situation of Figure 5.1, i.e., let ψ(t) be the

shock line through xi−1/2 and let w(t) be the left end of the rarefaction wave starting at

xi+1/2. The time tn+1 is determined by the requirement ψ(tn+1) ≤ w(tn+1). Since

ψ(t) = xi−1/2 + s(t− tn) with s =
f(uni+1)− f(uni )

uni+1 − uni

and

w(t) = xi+1/2 + f
′(uni )(t− tn),
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this yields

h = xi+1/2 − xx−1/2 ≥ (s− f ′(uni ))(tn+1 − tn) = (s− f ′(uni ))k. (5.4)

As f is assumed to be convex, s lies between f ′(uni ) and f
′(uni+1), i.e.

|s| ≤ max{|f ′(uni )|, |f ′(uni+1)|}.

Thus, if

ν := sup
i,n

∣∣∣∣
f ′(uni )k

h

∣∣∣∣ ≤
1

2
(5.5)

we infer

s− f ′(uni+1) ≤ |s|+ |f ′(uni )| ≤ 2 sup
i,n
|f ′(uni )| ≤

h

k
,

and (5.4) is satisfied. The condition (5.5) ensures that the shock and the rarefaction wave

do not interact in the mesh cell [xi−1/2, xi+1/2]× [tn, tn+1). We obtain the same condition

(5.5) if there is a rarefaction wave at xi−1/2 and a shock at xi+1/2 or if there are two shocks

at xi±1/2 since the wave speeds are always bounded by sup |f ′(uni )|.
In fact, we can allow the waves to interact during the time step, provided the interac-

tion is entirely contained within a mesh cell. This leads to the condition 2 sup |f ′(uni )| ≤
2h/k or

ν = sup
i,n

∣∣∣f ′(uni )
k

h

∣∣∣ ≤ 1. (5.6)

This condition can be interpreted as a generalization of the CFL condition (4.11) for linear

conservation laws. In the case of systems of conservation laws we replace (5.6) by

sup
i,n,p

∣∣∣λp(uni )
k

h

∣∣∣ ≤ 1,

where λp(u
n
i ) are the eigenvalues of the Jacobian f

′(uni ). This answers the first question.

Concerning the second question, we need to solve the Riemann problem to determine

u∗(uni , u
n
i+1). For systems of conservation laws, this may be expensive. Notice however,

that most of the structure of the Riemann solver is not used in the Gudonov scheme

and therefore, approximate Riemann solvers have been devised to improve the efficiency

of the Gudonov method. We do not describe these approximate solvers but refer to [5,

Sec. 14.2]. For scalar conservation laws, we can determine u∗ easily from the sign of f ′(uni )

and f ′(uni+1). Indeed, we consider the following four cases:

(1) f ′(uni ) ≥ 0 and f ′(uni+1) ≥ 0: In this case there is a rarefaction wave starting at
xi+1/2, and from Figure 5.2 (a) we see that u

∗ = uni .

(2) f ′(uni ) < 0 and f
′(uni+1) < 0: Again, there is a rarefaction wave starting at xi+1/2

but now u∗ = uni+1 (see Figure 5.2 (b)).
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(3) f ′(uni ) ≥ 0 and f ′(uni+1) < 0: There is a shock through xi+1/2 and (Figure 5.2 (c))

u∗ =

{
uni : s ≥ 0
uni+1 : s < 0.

(4) f ′(uni ) < 0 and f
′(uni+1) ≥ 0: There is a rarefaction wave starting at xi+1/2 and u

∗

is the unique solution of f ′(u∗) = 0 (since f is convex). As the wave speed passes

through zero within the wave it is called transonic rarefaction wave (Figure 5.2 (d)).

The value u∗ is called sonic point.

u
n
i+1

x i+1/2

u i
n

x i+1/2

u i
n u

n
i+1

(b)

u
n
i+1

x i+1/2

u i
n

s>0

(c)

u
n
i+1

x i+1/2

u i
n

(d)(a)

Figure 5.2: Computation of u∗.

The resulting flux function can be written in the simplified form

F (uni , u
n
i+1) =





min
un

i ≤u≤u
n
i+1

f(u) : uni ≤ uni+1

max
un

i+1
≤u≤un

i

f(u) : uni > uni+1.

Surprisingly, this expression also holds for general conservation laws, even non-convex

ones, and gives the correct Gudonov flux corresponding to the weak solution satisfying

the entropy condition (2.9) of Oleinik.

Example 5.1 For f(u) = au (a > 0) the flux function becomes

F (uni , u
n
i+1) = auni ,

and hence, from (5.3), the Gudonov scheme is equal to the upwind scheme for linear

equations (see Section 4),

un+1
i = uni −

ak

h
(uni − un+1

i ).

In this sense, the Gudonov method is a generalization of the upwind scheme to nonlinear

equations. ¤

We summarize the Gudonov scheme for scalar conservation laws:
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• Initialize
u0
i =

1

h

∫ xi+1/2

xi−1/2

u0(x) dx.

• For all i, n do:
if f ′(uni ) ≥ 0 and f ′(uni+1) ≥ 0 then u∗i = uni ;

if f ′(uni ) < 0 and f
′(uni+1) < 0 then u

∗
i = uni+1;

if f ′(uni ) ≥ 0 and f ′(uni+1) < 0 then u
∗
i = uni (if s ≥ 0) or u∗i = uni+1 (if s < 0);

if f ′(uni ) < 0 and f
′(uni+1) ≥ 0 then u∗i is the unique solution of f ′(u∗i ) = 0.

• Set
un+1
i = uni −

k

h
[f(u∗i )− f(u∗i−1)].
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