
MATH348-Advanced Engineering Mathematics Homework: PDEs - Part II

Conservation Laws, Source Terms, Diffusion in R2+1, Chain Rule, SL-Problems

Text: 12.8,12.9 Lecture Notes : N/A Lecture Slides: N/A

Quote of Homework Five

And the feeling is that there’s something wrong, ’cause I can’t find the words, and I can’t

find the songs.

Radiohead : Stop Whispering (1993)

1. Conservation Laws in One-Dimension

Recall that the conservation law encountered during the derivation of the heat equation was given by,

∂u

∂t
= −κ∇ · φ = −κdiv(φ),(1)

which reduces to

∂u

∂t
= −κ∂φ

∂x
, κ ∈ R(2)

in one-dimension of space.1 In general, if the function u = u(x, t) represents the density of a physical quantity then the function φ = φ(x, t)

represents its flux. If we assume the φ is proportional to the negative gradient of u then, from (2), we get the one-dimensional heat/diffusion

equation. 2

1.1. Transport Equation. Assume that φ is proportional to u to derive, from (2), the convection/transport equation, ut+cux = 0 c ∈ R.

1.2. General Solution to the Transport Equation. Show that u(x, t) = f(x− ct) is a solution to this PDE.

1.3. Diffusion-Transport Equation. If both diffusion and convection are present in the physical system then the flux is given by,

φ(x, t) = cu− dux, where c, d ∈ R+. Derive from, (2), the convection-diffusion equation ut + αux − βuxx = 0 for some α, β ∈ R.

1.4. Convection-Diffusion-Decay. If there is also energy/particle loss proportional to the amount present then we introduce to the

convection-diffusion equation the term λu to get the convection-diffusion-decay equation.3

1.5. General Importance of Heat/Diffusion Problems. Given that,

(3) ut = Duxx − cux − λu.

Show that by assuming, u(x, t) = w(x, t)eαx−βt, (3) can be transformed into a heat equation on the new variable w where α = c/(2D) and

β = λ+ c2/(4D).4

2. One Dimensional Heat Equation with Source Term

Given,

∂u

∂t
= c2

∂2u

∂x2
+ F (x, t),(4)

where x ∈ (0, L) and t ∈ (0,∞), subject to

ux(0, t) = 0, ux(L, t) = 0,(5)

and

u(x, 0) = g(x).(6)

1When discussing heat transfer this is known as Fourier’s Law of Cooling. In problems of steady-state linear diffusion this would be called Fick’s

First Law. In discussing electricity u could be charge density and q would be its flux.
2AKA Fick’s Second Law associated with linear non-steady-state diffusion.
3The uxx term models diffusion of energy/particles while ux models convection, u models energy/particle loss/decay. The final term should not be

surprising! Wasn’t the appropriate model for radioactive/exponential decay Y ′ = −α2Y ?
4This shows that the general PDE (3), which models can be solved using heat equation techniques.
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2.1. Cosine Half-Range Expansion. Let F (x, t) = e−t sin

(
2π

L
x

)
be the heat generation function. Find the Fourier cosine half-range

expansion of F .

2.2. General Solution. Using the previous result, solve for Gn(t) for n = 0, 1, 2, 3, . . . assuming that u(x, t) = G0(t)+

∞∑
n=1

cos
(nπ
L
x
)
Gn(t).

2.3. Fourier Coefficients. Assuming that g(x) =

{
2k
L
x, 0 < x < L

2
,

2k
L

(L− x), L
2
< x < L

, solve for any unknown constants associated with the

general solution.

3. Time Dependent Boundary Conditions

It makes sense to consider time-dependent interface conditions. That is, (4) and (6) subject to

u(0, t) = g(t), u(L, t) = h(t), t ∈ (0,∞)(7)

Show that this PDE transforms into:

∂w

∂t
= c2

∂2w

∂x2
− St(x, t) ,(8)

x ∈ (0, L) , t ∈ (0,∞) , c2 =
κ

ρσ
.(9)

with boundary conditions and initial conditions,

w(0, t) = w(L, t) = 0,(10)

w(x, 0) = F (x),(11)

where F (x) = f(x)− S(x, 0) and S(x, t) =
h(t)− g(t)

L
x+ g(t). 5

4. Heat Equation on a bounded domain of R2+1

Suppose that heat is allowed to flow in an x, y−plane, of finite area, A = LxLy, that has been insulated in the z−direction and its

perimeter.

4.1. Separation of Variables. Find three ODEs consistent with the heat equation modeling the physical situation described above.

4.2. Boundary Value Problems. Write down the boundary conditions implied by the physical situation above and solve all ODEs, with

their corresponding boundary conditions, given by the separation of variables above.

4.3. Fourier Synthesis. Apply superposition to the solutions of the ODE/BVPs from the previous step to find the general solution to

the heat equation. From the general solution, show that the long-time behavior is to average the initial condition over the plane.

5. Fourier Transforms

5.1. Dirac-Delta. F {f} where f(x) = δ(x− x0), x0 ∈ R.6

5.2. Decaying Exponential Function. F {f} where f(x) = e−k0|x|, k0 ∈ R+.

5.3. Even Combination of Dirac-Deltas. F−1
{
f̂
}

where f̂(ω) =
1

2
(δ(ω + ω0) + δ(ω − ω0)) , ω0 ∈ R.

5.4. Odd Combination of Dirac-Deltas. F−1
{
f̂
}

where f̂(ω) =
1

2i
(δ(ω + ω0)− δ(ω − ω0)) , ω0 ∈ R.

5.5. Horizontal Shifts. Find f̂(ω) where f(x+ c), c ∈ R.

5.6. Triangle Functions. Find F{f} where f(x) =

{
1− |x|, −1 < x < 1,

0, otherwise

5.7. Hyperbolic Secant Function. Find F{f} where f(x) = sech(πx)

5A similar transformation can be found for the wave equation with inhomogeneous boundary conditions. The moral here is that time-dependent

boundary conditions can be transformed into externally driven (AKA Forced or inhomogeneous) PDE with standard boundary conditions.
6Here the δ is the so-called Dirac, or continuous, delta function. This isn’t a function in the true sense of the term but instead what is called a

generalized function. The details are unimportant and in this case we care only that this Dirac-delta function has the property

∫ ∞
−∞

δ(x−x0)f(x)dx =

f(x0). For more information on this matter consider http://en.wikipedia.org/wiki/Dirac_delta_function. To drive home that this function is

strange, let me spoil the punch-line. The sampling function f(x) = sinc(ax) can be used as a definition for the Delta function as a → 0. So can a

bell-curve probability distribution. Yikes!

http://en.wikipedia.org/wiki/Dirac_delta_function
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