Definition - Linear Combination - Given a set, S, of n vectors,

$$
\begin{equation*}
S=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots, \mathbf{a}_{n}\right\} . \tag{1}
\end{equation*}
$$

We say that \mathbf{b} is a linear combination of the vectors from S if there exist scalars $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ such that,

$$
\begin{equation*}
\mathbf{b}=\sum_{i=1}^{n} x_{i} \mathbf{a}_{i} \tag{2}
\end{equation*}
$$

Definition - Linear Independence - Given a set, S, of n vectors,

$$
\begin{equation*}
S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\} . \tag{3}
\end{equation*}
$$

We say that the vectors of S forms a linearly independent set if and only if the scalars $x_{1}=x_{2}=x_{3}=\cdots=x_{n}=0$ are the only solution to,

$$
\begin{equation*}
\mathbf{0}=\sum_{i=1}^{n} x_{i} \mathbf{v}_{i} . \tag{4}
\end{equation*}
$$

If a set of vectors does not form a linearly independent set then the vectors are said to be linearly dependent.

Definition - Column Space - Given the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ we define the set of all linear combinations of the columns of the matrix \mathbf{A} to be the column space of \mathbf{A} and we denote this space of vectors as $\operatorname{Col}(\mathbf{A})$.

Definition - Null Space - Given the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ we define the set of vectors \mathbf{x}, which satisfies the equation $\mathbf{A x}=\mathbf{0}$ to be the Null Space of \mathbf{A} and we denote this space of vectors $\operatorname{Nul}(\mathbf{A})$.

Note - Straightforward calculations will verify that,

$$
\sum_{i=1}^{n} x_{i} \mathbf{a}_{i}=x_{1}\left[\begin{array}{c}
a_{11} \tag{5}\\
a_{21} \\
a_{31} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
a_{32} \\
\vdots \\
a_{m 2}
\end{array}\right]+x_{3}\left[\begin{array}{c}
a_{13} \\
a_{23} \\
a_{33} \\
\vdots \\
a_{m 3}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
a_{3 n} \\
\vdots \\
a_{m n}
\end{array}\right]=\mathbf{A} \mathbf{x}
$$

Hints:

- Problem 3 - If you are given $\mathbf{A x}=\mathbf{b}$ and a solution \mathbf{x} exists then what does this imply about \mathbf{b} in light of (2)?
- Problem 4-If $\mathbf{x}=\mathbf{0}$ is the only solution to $\mathbf{V} \mathbf{x}=\mathbf{0}$ then (5) implies that the columns of \mathbf{V} forms a linearly independent set.
- Problem 5 - What is Aw? What does this imply about \mathbf{w} ? Is there a solution to $\mathbf{A x}=\mathbf{w}$? What does this imply about \mathbf{w} ?

