
PH311 Midterm answers and grading: 10/17/06

1 The time evolution of a spin 1/2 particle

You can do this either by power series expansion or an eigenvalue decomposition. E.g.,
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Show now that P
2 = I and hence all odd powers of P equal P and all even powers equal the

identity. Thus the power series expansion of exp(iωtP) reduces to
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= cos(ωt)I + sin(ωt)P.

2 The ladder operators

This is a straightforward exercise in matrix multiplication. You should all get this.

3 A model of radioactive decay

After 1 time interval the amount of decayed material is PA and amount of undecayed material is
(1 − P )A. The latter is available to decay during the second time interval. Hence after two time
intervals the total amount of decayed material is PA+P (1−P )A or PA+PA(1−P ). Continuing
this process, after n time intervals the total amount of decayed material is:

PA + PA(1 − P ) + PA(1 − P )2 + ... + PA(1 − P )(n−1)

In the limit that n → ∞, the sum of this geometric series is

PA

1 − (1 − P )
= A

The physical interpretation of this is that eventually all the material decays.

4 Computing π

First note that:
∫ 1

0

dx

1 + x2
= [arctan(x)]10 =

π

4

Next, expand the integrand in a power series and integrate term by term. This will allow you
to write π

4 as a (slowly-convergent!) series.

1



1

1 + x2
= 1 − x

2 + x
4
− x

6
· · ·

Integrating this term by term we have
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Evaluated at the lower limit (zero), this is zero. Hence the value of the integral is:
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In fact,
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= 2.895

If you take this out to 100 terms you get 3.16. This is a terrible way to compute π.
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