PH311 Midterm answers and grading: 10/17/06

1 The time evolution of a spin 1/2 particle

You can do this either by power series expansion or an eigenvalue decomposition. E.g.,
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Show now that P? = I and hence all odd powers of P equal P and all even powers equal the
identity. Thus the power series expansion of exp(iwtP) reduces to
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= cos(wt)I + sin(wt)P.

2 The ladder operators

This is a straightforward exercise in matriz multiplication. You should all get this.

3 A model of radioactive decay

After 1 time interval the amount of decayed material is PA and amount of undecayed material is
(1 — P)A. The latter is available to decay during the second time interval. Hence after two time
intervals the total amount of decayed material is PA+ P(1— P)A or PA+ PA(1— P). Continuing
this process, after n time intervals the total amount of decayed material is:

PA+ PA(1—P)+ PA(1 —P)?>+ ...+ PA1—P)Y

In the limit that n — oo, the sum of this geometric series is

PA

oo

The physical interpretation of this is that eventually all the material decays.

4 Computing 7

First note that:
T
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Next, expand the integrand in a power series and integrate term by term. This will allow you

to write § as a (slowly-convergent!) series.
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Integrating this term by term we have
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Evaluated at the lower limit (zero), this is zero. Hence the value of the integral is:
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In fact,

If you take this out to 100 terms you get 3.16. This is a terrible way to compute 7.



