PH311 Midterm answers and grading: 10/17/06

1 The time evolution of a spin $1 / 2$ particle

You can do this either by power series expansion or an eigenvalue decomposition. E.g.,

$$
\begin{gathered}
\exp (i \omega t \mathbf{P})=1+(i \omega t \mathbf{P})+\frac{1}{2}(i \omega t \mathbf{P})^{2} \cdots \\
=1+i \omega t \mathbf{P}-\frac{1}{2} \omega^{2} t^{2} \mathbf{P}^{2} \cdots
\end{gathered}
$$

Show now that $\mathbf{P}^{2}=I$ and hence all odd powers of P equal \mathbf{P} and all even powers equal the identity. Thus the power series expansion of $\exp (i \omega t \mathbf{P})$ reduces to

$$
\begin{gathered}
1-\frac{1}{2} \omega^{2} t^{2} \mathbf{I}+\frac{1}{24} \omega^{4} t^{4} \mathbf{I} \cdots+i\left(\omega t \mathbf{P}-\frac{1}{6} \omega^{3} t^{3} \mathbf{P} \cdots\right) \\
=\left(1-\frac{1}{2} \omega^{2} t^{2}+\frac{1}{24} \omega^{4} t^{4} \cdots\right) \mathbf{I}+i\left(\omega t-\frac{1}{6} \omega^{3} t^{3} \cdots\right) \mathbf{P} \\
=\cos (\omega t) \mathbf{I}+\sin (\omega t) \mathbf{P} .
\end{gathered}
$$

2 The ladder operators

This is a straightforward exercise in matrix multiplication. You should all get this.

3 A model of radioactive decay

After 1 time interval the amount of decayed material is $P A$ and amount of undecayed material is $(1-P) A$. The latter is available to decay during the second time interval. Hence after two time intervals the total amount of decayed material is $P A+P(1-P) A$ or $P A+P A(1-P)$. Continuing this process, after n time intervals the total amount of decayed material is:

$$
P A+P A(1-P)+P A(1-P)^{2}+\ldots+P A(1-P)^{(n-1)}
$$

In the limit that $n \rightarrow \infty$, the sum of this geometric series is

$$
\frac{P A}{1-(1-P)}=A
$$

The physical interpretation of this is that eventually all the material decays.

4 Computing π

First note that:

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}=[\arctan (x)]_{0}^{1}=\frac{\pi}{4}
$$

Next, expand the integrand in a power series and integrate term by term. This will allow you to write $\frac{\pi}{4}$ as a (slowly-convergent!) series.

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6} \ldots
$$

Integrating this term by term we have

$$
x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

Evaluated at the lower limit (zero), this is zero. Hence the value of the integral is:

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \cdots
$$

Hence,

$$
\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \cdots\right)
$$

In fact,

$$
4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)=2.895
$$

If you take this out to 100 terms you get 3.16 . This is a terrible way to compute π.

