Amplifier design

Spatial dependence of gain

Frantz-Nodvick equation for saturated pulse amplification

Modeling spatial gain dependence

Multipass amplifier design

Transverse diode pumping

ASE

Spatial dependence

- Gain follows distribution of pump intensity
- Spatial variation of gain affects beam profile
- Examples:
 - Iongitudinal pumping with Gaussian beam leads to gain narrowing of spatial profile. More gain in center, less at edges
 - Saturated absorption by a Gaussian beam: saturation in center suppresses intensity there. Leads to widening of output beam.

Pulse amplification: saturated gain algorithm

Example: Ti:sapphire multipass amp

- Seed pulse from pulsed laser oscillator: 1nJ (800nm)
- Amplify to 1mJ, use 7mJ of pump energy (532nm)
- Multipass designs: spatially separate beams

Three-mirror ring preamp:

- Up to 12 passes
- Focused beam in crystal
- 2 mirror alignment

Q-switched Nd;YLF IOW max IOW max III (Sapphire Pulses input)

Bowtie power amp:

- Collimated beam
- 8 mirrors

Multipass design

- Assume uniform pumping with round beams
- Calculate stored fluence and small signal gain
- Use saturated gain expression to calculate new energy after 1st pass
- Subtract extracted energy from stored energy (over seed spot area)
- Repeat for N passes

Conditions: 1nJ seed, 7mJ pump energy, 95% absorption, 10% loss/pass Stored energy: hV_{mad}

$$E_{stor} = E_{pump} \eta_{abs} \frac{h v_{seed}}{h v_{pump}} = 4.4 \, mJ$$

Small signal gain estimate:

$$G_0 = \left(\frac{E_{\text{target}}}{E_{\text{seed}}}\right)^{1/N} \frac{1}{1-L} = 4.42$$

Estimated spot size:

$$A_{pump} = \frac{E_{stor}}{\Gamma_{sat} \ln[G_0]}, \quad w_p = 300 \,\mu m$$

Multipass: Simple calculated results

 Small signal gain estimate works as long as stored energy is not depleted

- Smaller seed size to ensure full overlap with pump
- Avoid damage thresholds for pump and seed
- Saturate at desired energy to reduce noise
- Account for size change in Brewster cut crystal

Polarization issues in pumping birefringent materials

- For Ti:sapphire, both polarizations contribute to seed gain along c-axis
- Much higher pump absorption for E along c-axis

 $- \alpha$ across c-axis is about 40% lower than along c-axis

Transverse Pumping Gain Estimates

- Seed: 2nJ
 - Cavity Losses: ~1%
 - т_{pass}: 1ns
- Pump (CW): 1kW (Total: 2X .5kW Bars)
 - η_{Abs}=63.2%
 - η_{QD}=55.6%
 - $-\eta_{Pump} = \eta_{Abs} \eta_{QD} = 35.1\%$
 - − Heat: ~560 W
 - Significant (Cylindrical) Thermal Lens Expected
 - w=30um
- Single Pass Gain (small signal)
 - Astigmatic Seed: g≈1.64
 - w_x=200um, w_y=30µm
 - Spatially Chirped Seed: g≈1.64
 - w_x=2mm, w_y=30µm

•Multi-Pass Extraction: 37 Passes

-Astigmatic Mode: ~136uJ (small extraction area) -Spatially Chirped:~.53mJ (46% extraction)

Central dip in gain: spatial gain mode *expansion*. This could be used to counter gain narrowing for spatially-chirped seed

Frequency dependence: account for lineshapes

• Absorption and gain coefficients and saturation intensity both depends on frequency

$$\alpha(I,v) = \frac{\alpha_0(v-v_0)}{1+\frac{I(v)}{I_{sat}(v-v_0)}}$$

- For broadband input, saturation changes shape of transmitted spectrum
 - Absorption: power broadening
 - Gain: spectral gain narrowing

Amplified Spontaneous Emission (ASE)

- Spontaneous emission is emitted into 4π steradians, but is amplified on the way out if there is gain.
 - D ______ >
 - ASE can be considered to be a noise source
 - ASE is more directional than fluorescence, but not as directional as a coherent laser beam
 - Some high-gain lasers are essentially ASE sources (no mirrors)
- Implications for amplifier design
 - ASE can deplete stored energy before pulse extraction
 - Use timing and good seed energy to extract energy from medium before ASE
 - Ensure that transverse gain is smaller than longitudinal to avoid parasitic depletion.

Self-absorption and "optically-thick" media

- A related phenomenon for an absorbing medium is when radiation is *absorbed* along the way out.
- More absorption near the line center, so the transmitted light is broader in spectrum.
- For an extended luminous body (e.g. the Sun), the individual spectral lines get merged together to look like the blackbody.