Homework 2
PH462 EM Waves and Optical Physics
due 7 Sept. 2007 in class
posted: 31 Aug 2007

1. The case of wave propagation in spherical symmetry is important to describe focusing and diverging beams.
a. Start with the scalar wave equation $\nabla^{2} \psi=\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}$, and assume angular symmetry (not true in general) so that $\psi=\psi(r, t)$. Write the wave equation in spherical coordinates, and that $\psi(r, t)=\frac{1}{r} \exp \left[i\left(k_{0} r \pm k_{0} \mathrm{v} t\right)\right]$ satisfies this equation. Which sign corresponds to an outward propagating wave?
b. A diverging beam that is propagating along the z-axis can be thought of as a section of a spherical wave. Using a Taylor expansion for $z \gg x$ and $z \gg y$, show that the spherical wave can be written in the following approximate form (the paraxial

$$
\text { approximation): } \frac{1}{r} \exp \left[i k_{0} r\right] \approx \frac{1}{z} \exp \left[i k_{0} z\right] \exp \left[\frac{i k_{0}\left(x^{2}+y^{2}\right)}{2 z}\right]
$$

c. Make a sketch of the wavefronts (lines of constant phase) for this wave.
2. Consider an electromagnetic plane wave, with field amplitude E_{0} traveling in vacuum with a wavevector magnitude k_{0} at an angle of $+65^{\circ}$ to the z-axis. The \mathbf{k}-vector is in the y z plane and the E-field direction is along the x-axis.
a. Write an expression in Cartesian coordinates for wave, making sure to define the polarization direction and the vector direction of \mathbf{k}. Use complex exponential notation.
b. Use one of the Maxwell equations to calculate the B-field for the wave in part a. Make a sketch of the directions of \mathbf{E}, \mathbf{B} and \mathbf{k}.
3. Consider a wave with the Jones vector $\hat{\mathrm{E}}_{1}=\binom{-i}{2+i}$. What type of polarization is this wave? Find the Jones vector $\hat{\mathrm{E}}_{2}$ that is orthogonal to this vector (so that $\hat{\mathbf{E}}_{1}^{*} \cdot \hat{\mathbf{E}}_{2}=0$).
4. Demonstrate using the Jones vector notation that right- and left-circularly polarized light waves are orthogonal.
5. A wave passes through a horizontal polarizer and exits in the horizontal polarized state. If we place a vertical polarizer next, so that these polarizers are "crossed", no light gets through. If we insert a polarizer oriented at 45° between the H - and V - polarizers, how much light gets through. Show how you calculate the result.

