
Uncertainty Analysis

Introduction.  An error is the difference between any single measurement and the true value of 
some measurand. An uncertainty is a mean error or an estimate of the mean error of a series of 
measurements.

There are 2 kinds of uncertainty: “measured” (called Type A by the International 
Organization for Standardization, or ISO) and “all others” (Type B).  A measured uncertainty is 
the standard deviation of the mean of a set of measurements. The standard deviation you are 
familiar with is called the sample standard deviation and is given by
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where mi are the measured values, μ is the mean value, and N is the number of measurements. 
The Excel function STDEV calculates s.  If the errors are randomly distributed, then s is 
approximately independent of N, and the measurement is said to be stationary.

The standard uncertainty is the standard deviation of the mean, or SDOM, and is given 
by

σ=s /N . (2)

Equation (2) reflects that the more measurements we take, the more certain we are of the average 
value.  Unfortunately, the square-root dependence reflects a law of diminishing returns; for 
example, to reduce the standard uncertainty (or uncertainty, for short) by a factor of 10, we have 
to take 100 times more measurements.

“All other” uncertainties are estimated or, for example, imported from manufacturer’s 
specifications. To estimate an uncertainty, we first make an educated guess of the largest 
probable error. With a digital voltmeter, the largest probable error is 1/2 the least count of that 
voltmeter, presuming that the voltmeter is correctly calibrated. That is, if the least count of the 
voltmeter is 1 mV, then the largest probable error is 0.5 mV. (Why?)

Let us say that the least count of the voltmeter is 1 mV and we measure a voltage of 
1.000 V.  The true value of the voltage is between 0.9995 V and 1.0005 V, and any value within 
that range is equally probable.  The probability distribution that describes the true value is 
therefore a rectangular function that is 0 outside the range between 0.9995 V and 1.0005 V.  This 
range is called the confidence interval of the measurement, because we are completely confident 
that the true value lies somewhere within it (again, presuming that the voltmeter is precisely 
calibrated).

The largest probable error is, in this case, the half-width of the confidence interval.  It is 
not the same as the uncertainty.  To the contrary, the uncertainty is a standard deviation.  The 
standard deviation of a rectangular distribution is its half-width divided by 3 , so we define the 
standard uncertainty as

um =Δm/3 , (3)



where the subscript m refers to the measurand and Δm is the largest probable error of the 
measurand m. We do not divide by N , since this component of uncertainty cannot be reduced 
by averaging.

Both um and σ may be important in a given measurement. Indeed, there may be several 
components of uncertainty u1, u2, u3,…, though there is often only 1 measured uncertainty σ. 
When several components of uncertainty are important, they are added in quadrature:
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where uc is called the combined standard uncertainty. By convention, uc  is a positive number.

The result of a measurement is expressed as 

μ±2uc , (5)

where μ is the mean or measured value and uc is the combined standard uncertainty. The quantity 
2uc is called the expanded uncertainty. If μ is 3.2 m and uc is 0.1 m, then we state that the 
measured value is 3.2 ± 0.2 m (not ± 0.1 m). Note the correct number of significant digits; 
3.200 ± 0.20 m, for example, is incorrect.

The interval ±2uc is the 95 % confidence interval; that is, we think there is a 95 % 
probability that the true value lies within the range between μ−2uc  and μ+2uc . In reality, 
cautious scientists and engineers often overestimate the components of uncertainty, so the 
probability is most likely much higher than 95 %.  The interval between μ−3uc  and μ+3uc  is 
the 99.7 % confidence interval; there is virtually no chance that the true value lies outside this 
interval if the errors are estimated accurately.

Save this thought for a later lab: Sometimes we need to measure one quantity in order to 
calculate the value of another quantity.  For example, if we want to know the average velocity of 
a projectile, we might measure the time needed to traverse a given distance and then calculate the 
velocity from v=d / t .  If we know d very accurately, then we need to relate the uncertainty of v 
to the uncertainty of t.  More generally, we might have v=f  t  .   Without going into detail, we 
express the largest possible error as the first term in a Taylor series:
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or, equivalently (because u’s and Δ’s are related by 3 ),
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A calculation based on Equation (6) or (7) is called propagation of error or propagation of 
uncertainty.



Experiment (team activity).

1. Study the micrometer checked out to you by the instructor. Devise a strategy to measure the 
mean diameter of the pencil. For this exercise, let us define the diameter as the distance between 
two opposed apexes (as opposed to the distance between two flat facets). Do not try to 
interpolate between the least-count markings of the micrometer. Most instruments are assumed 
to be no more accurate than their least counts; in the case of the micrometer, play and error in the 
pitch of the threads probably limit its accuracy to the least count.  The calibration of a digital 
voltmeter is likewise no better than its least count implies and may in fact be poorer because of 
nonlinearity in the electronics.

2. Calculate the mean µ of your measurements. Calculate the standard deviation of the mean,
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where mi are the individual measurements and N is the number of measurements.  You may use 
the Excel function STDEV and divide the result by √(N). A note that standard deviation has little 
meaning when N is less than perhaps 10.

3. Calculate the standard uncertainty ulc due to the least count (lc) of the micrometer.  Compare 
ulc with the measured uncertainty σ.  How many measurements would you have to make to 
reduce σ to a value equal to ulc ? Many measurements are considered accurate when the random 
uncertainty σ is equal to the estimated uncertainty due to the instrument itself, as noted in 1.

4. Suppose that the pencil is made of wood. Suppose further that the temperature in some 
application might be between 0 and 40 °C, and the temperature in the lab right now is 
approximately 20 °C. The coefficient of expansion of wood along the grain is 3 to 4.5×10--6/K; 
across the grain, it is 25 to 40×10--6/K and depends on specific gravity.  If the diameter of the 
pencil is D, estimate the largest probable error ΔD that results from thermal expansion.  What is 
the corresponding standard uncertainty uT of the measured diameter? (Hint: It is conventional to 
assume, conservatively, that estimated uncertainties may be described by a rectangular 
distribution.  Hence, calculate the largest probable error of diameter due to thermal expansion 
and divide it by 3 .)

5. We have identified 3 components of uncertainty: the least count of the micrometer, the 
temperature, and the random error due to the irregularity of the pencil.  Are any of the 
components negligible?  Add the non-negligible components in quadrature and calculate the 
combined standard uncertainty uc. Evaluate uc and calculate the expanded uncertainty 2 uc. 

6. State the mean thickness of the pencil and the expanded uncertainty in the correct form and 
with the right number of significant digits.

7. Suppose that the pencils must be pushed snugly through a hollow cylinder, much as an optical 
fiber is passed through a ferrule for making connections.  We want to have good confidence that 
any pencil will fit through any cylinder.  What must be the minimum diameter of the cylinder? 
Hint:  Do you use the SDOM or the sample standard deviation?  Why?  Assume that the inside 
diameter of the cylinder is known accurately.


