## Laser Physics PHGN480

## Midterm - take home: due thursday Nov 6 in class. Ground rules: open book, open notes. No discussion with others - ask me if you need clarification. You may use Mathematica.

- problem 1

Two level system in saturation.
Consider an atomic system: the population difference is $\Delta N=N_{1}-N_{2}$ and the total atomic density is $N_{t}=N_{1}+N_{2}$. At $t=0$, there is an initial value of $\Delta N(0)$, and an constant-intensity incident beam is turned on that has a frequency that is resonant with the energy difference. Use rate equations to calculate the evolution of the population difference $\Delta \mathrm{N}(t)$. Express your result in terms of the saturation intensity. Show all your work. Comments:

- in your rate equations, include spontaneous emission with a rate A.
- you may assume that the two states have the same level of degeneracy ( $g_{1}=g_{2}$ ).
- problem 2

Consider a molecule that makes a transition between two rotational levels $\mathbf{J}$ ' and $\mathrm{J}^{\prime \prime}$, while at the same time the vibrational level changes from v ' to v " (the electronic level stay the same).

- a) Calculate an expression for the dipole moment for a dipole transition from the $\mathbf{v}^{\prime}=\mathbf{1}, \mathrm{J}^{\prime}=3$ to the $\mathrm{v}=\mathbf{0}, \mathrm{J}$ " $=2$ levels. You may assume the molecule starts and ends in the $J_{z}=0$ sublevel for the purposes of this integral. Note that the wavefunction for the molecule is the product of a spherical harmonic with a constant value of $\mathbf{R}$ (for the rotational state), and the simple harmonic wavefunction. For the SHO portion of this problem, you may adapt the calculation shown in Griffiths, example 9.1.
- b) The molecular radius is $\mathbf{R}=\mathbf{2} .66$ angstroms, the atomic mass is $\mathbf{1 2 7}$ atomic mass units, and the moment of inertia is $I=m R^{2} / 2$. The vibrational frequency is $6.43 \times 10^{12} \mathrm{~Hz}$.
- Calculate the energy difference between these levels in eV and the corresponding wavelength for the transition.
- Although there can be transitions among other $J_{z}$ sublevels (all degenerate in energy), with slightly differing dipole moments, let's assume the dipole moment you calculated in part a works for all of them. Calculate the spontaneous emission rate for the transition between the levels in part a.
problem 3
Consider the propagation of a beam through a simple imaging system consisting of two lenses of focal lengths $f_{1}$ and $f_{2}$, separated by a distance $f_{1}+f_{2}$. The starting plane is a distance $f_{1}$ at the left, and the final plane is a distance $f_{2}$ from the second lens.

- a) Write the ABCD matrix for this system.
- b) Interpret this system geometrically: what happens to a ray of input height $h$, and ray angle h'?
- c) Interprete the effect of this system on a Gaussian beam:
- How is the output waist and beam radius affected? Consider both cases where:
$>$ the beam is at a waist at the input, and
$>$ the beam is not at a waist at the input
- d) if plane mirrors are placed at the object and image distances to form a resonator, what will be the value of the stability parameter?
> Will the cavity be stable, marginally stable, or unstable? Based on the stability parameter, make a sketch of an equivalent two-mirror cavity (i.e. two curved mirrors, no flat mirrors).

