
Advanced Engineering Mathematics Homework Solutions One

Systems of Linear Equations : Algebra, Geometry, Row-Reduction, Determinants, Transformations

Text: 7.1-7.3, 7.5, 7.7-7.8 Lecture Slides: 2-4

Quote of Solutions to Homework One

Kesuke Miyagi: Ready?

Daniel LaRusso : Yeah, I guess so.

Kesuke Miyagi : Daniel-san, must talk. Walk on road. Walk right side, safe. Walk left

side, safe. Walk middle, sooner or later, you get squished just like grape. Here, karate

same thing. Either you karate do, yes, or karate do, no. You karate do, ”guess so,” just

like grape. Understand?

Daniel LaRusso: Yeah, I understand.

Kesuke Miyagi: Ready?

Daniel LaRusso: Yeah, I’m ready.

Robert Mark Kamen : The Karate Kid (1984)

1. Matrix Multiplication

Define the commutator and anti-commutator of two square matrices to be,

[·, ·] : Cn×n × Cn×n → Cn×n, such that [A,B] = AB−BA, for all A,B ∈ Cn×n,

{·, ·} : Cn×n × Cn×n → Cn×n, such that {A,B} = AB + BA, for all A,B ∈ Cn×n,

respectively. Also define the Kronecker delta and Levi-Civita symbols to be,

δij : N× N→ {0, 1}, such that δij =

(
1, if i = j,

0, if i 6= j

εijk : (i, j, k)→ {−1, 0, 1} , such that εijk =

8><>:
1, if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1, if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0, if i = j or j = k or k = i

respectively. Also define the so-called Pauli spin-matrices (PSM) to be,

σ1 = σx =

"
0 1

1 0

#
, σ2 = σy =

"
0 −i
i 0

#
, σ3 = σz =

"
1 0

0 −1

#
.

1.1. The PSM are self-adjoint matrices. Show that σm = σh
m for m = 1, 2, 3.

A matrix is self-adjoint if it is equal to its own complex conjugated transpose. That is, A is self-adjoint (also called Hermitian) if

A = Ah = Ā
t
. Notice that if a matrix has only real entries then self-ajoint implies symmetric. Clearly, for m = 1 and m = 3 the matrix is

real and symmetric an therefore self-adjoint. When m = 2 we write,

σh
y = σ̄y

t

=

"
0 −i
i 0

#t

=

"
0 i

−i 0

#

=

"
0 ī

bari 0

#
= σy.

Hence σy is self-adjoint.

1

http://en.wikipedia.org/wiki/Commutator
http://en.wikipedia.org/wiki/Commutator#Anticommutator
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Levi-Civita_symbol
http://en.wikipedia.org/wiki/Pauli_matrices
http://mathworld.wolfram.com/Self-AdjointMatrix.html
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1.2. The PSM are unitary matrices. Show that σ2
m = I for m = 1, 2, 3 where [I]ij = δij .

A matrix is unitary if UhU = I. That is, a matrix is unitary if its adjoint is also its own inverse. Since we already know that the PSM are

self-adjoint, σh
m = σm, we need only show that σ2

m = I for m = 1, 2, 3.

σ2
1 =

"
0 1

1 0

#"
0 1

1 0

#
"

0 · 0 + 1 · 1 0 · 1 + 1 · 0
1 · 0 + 0 · 1 1 · 1 + 0 · 0

#
= I

σ2
2 =

"
0 −i
i 0

#"
0 −i
i 0

#
= I

σ2
3 =

"
1 0

0 −1

#"
1 0

0 −1

#
= I

Hence, the PSM are unitary matrices.

1.3. Trace and Determinant. Show that tr(σm) = 0 and det(σm) = −1 for m = 1, 2, 3. Given a matrix,

A =

"
a b

c d

#
,

we define the trace and determinant of A with the following matrix functions,

T = tr(A) = a+ d, D = det(A) = ad− bc.

It is easy to see that the PSM are traceless matrices. That is tr(σm) = 0 + 0 for m = 1, 2 and tr(σ) = 1− 1 = 0 for m = 3. Another quick

check shows,

det(σ1) = 0 · 0− 1 · 1 = −1

det(σ2) = 0 · 0− i(−i) = −1

det(σ3) = 1 · (−1)− 0 · 0 = −1

Generally, one can show that unitary matrices have determinant one or negative one.

1.4. Anti-Commutation Relations. Show that {σi, σj} = 2δijI for i = 1, 2, 3 and j = 1, 2, 3.

If we notice a couple of identities first then the busy-work is reduced. Specifically, note that {A,B} = {B,A} and {A,A} = 2A2. So, by

the self-adjoint and unitary properties we have, {σi, σi} = 2σ2
i = 2I for i = 1, 2, 3. For all other cases we expect the anti-commutator to

http://en.wikipedia.org/wiki/Unitary_matrix
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return a zero matrix. To show this we need only consider the following ordered pairs, (i, j) = {(1, 2), (1, 3), (2, 3)}. Doing so gives,

{σ1, σ2} =

"
0 1

1 0

#"
0 −i
i 0

#
+

"
0 −i
i 0

#"
0 1

1 0

#

=

"
i 0

0 −i

#
+

"
−i 0

0 i

#
= 0

{σ1, σ3} =

"
0 1

1 0

#"
1 0

0 −1

#
+

"
1 0

0 −1

#"
0 −1

1 0

#

=

"
0 −1

1 0

#
+

"
0 1

−1 0

#
= 0

{σ2, σ3} =

"
0 −i
i 0

#"
1 0

0 −1

#
+

"
1 0

0 −1

#"
0 −i
i 0

#

=

"
0 i

i 0

#
+

"
0 −i
−i 0

#
= 0

Taken together these statements imply that {σi, σj} = 2δij for i = 1, 2, 3 and j = 1, 2, 3.

1.5. Commutation Relations. Show that [σi, σj ] = 2
√
−1

3X
k=1

εijkσk for i = 1, 2, 3 and j = 1, 2, 3.

Again, to make quick work of this we notice that [A,B] = − [B,A] and [A,A] = 0. This implies that if the subscripts are the same

then [σi, σi] = 2
√
−1
P3

k=1 εiikσk = 0 since εiik = 0 by definition. As before we now only need to determine the commutator relation for

(i, j) = {(1, 2), (1, 3), (2, 3)} and note that if the subscripts are switched then a negative sign is introduced. Moreover, we can use the

previous results since the commutator is just the anti-commutator with a subtraction. Thus,

[σ1, σ2] = 2
√
−1

"
1 0

0 −1

#
= 2
√
−1σ3

[σ1, σ3] = 2

"
0 −1

1 0

#

= −2
√
−1

"
0 −i
i 0

#
= −2

√
−1σ2

[σ2, σ3] = 2
√
−1

"
0 1

1 0

#
= 2
√
−1σ1

this and noting the anti-symmetry of the commutator establishes the following pattern:

i j

3X
k=1

εijkσk

1 2 ε121σ1 + ε122σ2 + ε123σ3 = σ3

1 3 ε131σ1 + ε132σ2 + ε133σ3 = −σ2

2 3 ε231σ1 + ε232σ2 + ε233σ3 = σ1

Noting that εijk = −εjik completes the pattern.
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2. Solutions Sets to Linear Systems of Algebraic Equations

Given,

A1 =

264 1 −3 0

−1 1 5

0 1 1

375 , A2 =

264 6 18 −4

−1 3 8

5 15 −9

375 , A3 =

264 1 2 1

0 1 −1

1 0 3

375 , A4 =

264 1 2 3

2 4 6

3 6 9

375 , A5 =

264 5 3

−4 7

9 −2

375 ,

b1 =

264 5

2

0

375 , b2 =

264 20

4

11

375 , b3 =

264 4

1

0

375 , b4 =

264 10

20

30

375 , b5 =

264 22

20

15

375 .
2.1. Algebra. Find all solutions to Aix = bi for i = 1, 2, 3, 4, 5. The following row-equivalences can be checked via computational tools.1

[A1 |b1 ] ∼

264 1 0 0 2

0 1 0 −1

0 0 1 1

375(1)

[A2 |b2 ] ∼

264 1 3 0 4

0 0 1 1

0 0 0 0

375(2)

[A3 |b3 ] ∼

264 1 0 3 0

0 1 −1 0

0 0 0 1

375(3)

[A4 |b4 ] ∼

264 1 2 3 10

0 0 0 0

0 0 0 0

375(4)

[A5 |b5 ] ∼

264 1 0 0

0 1 0

0 0 1

375(5)

Since the reduced row echelon matrices share the same solutions as the original linear systems we have,

(1)⇒ x =

264 x1

x2

x3

375 =

264 2

−1

1

375 ,

(2)⇒ x =

264 x1

x2

x3

375 =

264 4− 3x2

x2

1

375 =

264 4− 3t

t

1

375 , t ∈ R,

(4)⇒ x =

264 x1

x2

x3

375 =

264 10− 2x2 − 3x3

x2

x3

375 =

264 10− 2t− 3s

t

s

375 , t, s ∈ R.

Since in systems three and five the reduced row echelon forms have an inconsistent row their associated systems do not have solutions. More

precisely, the first two equations of both systems have points of common intersection but the third equation does not share these points.

2.2. Geometry. Describe or plot the geometry formed by the linear systems and their solution sets.

1These calculations should be done by hand. There is no replacement for this type of practice. Computational tools should be used to check your

work either as you go or at the end of your hand-calculations. A good tool can be found through the external material links on the ticc website. The

tool-kit will row-reduce a matrix and show you the steps it used.

http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi 
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• System one is the algebraic representation of three planes in space, which share a common point of intersection, (2,−1, 1).

• System two is the algebraic representation of three planes in space, which share common points of intersection. There are infinitely

many of these points defined by x = [4− 3t t 1]t, which parameterizes a line in space.

• System three is the algebraic representation of three planes in space, which share no common points of intersection. This does not

mean that the planes do not intersect one another. It just means that they do not do so simultaneously.

• System four is the algebraic representation of three planes in space, which share common points of intersection. There are infinitely

many of these points defined by x = [10− 2t− 3s t s]t, which parameterizes a plane in space.

• System five is the algebraic representation of three lines in space, which share no common points of intersection. Again, these lines

intersect one another but do not have any points in space where they do so simultaneously.

3. Square Coefficient Data and Matrix Inversion

Given,

A =

264 3 6 7

0 2 1

2 3 4

375 .
3.1. Matrix Inverse: Take One. Find A−1 using the Gauss-Jordan Method. (pg.317)

When asked to calculate an inverse matrix this is the algorithm to use. It is simpler and less computationally intensive than other methods

and is roughly what a computational device does when asked to find an inverse matrix.264 3 6 7 1 0 0

0 2 1 0 1 0

2 3 4 0 0 1

375 R1→ R1− 3R2

∼
R3→ 2R1− 3R3

264 3 0 4 1 −3 0

0 2 1 0 1 0

0 3 2 2 0 −3

375 ∼
2R3− 3R2

∼

264 3 0 4 1 −3 0

0 2 1 0 1 0

0 0 1 4 −3 −6

375 R1→ R1− 4R3

∼
R2→ R2−R3

264 3 0 0 −15 9 24

0 2 0 −4 4 6

0 0 1 4 −3 −6

375 R1→ R1/3

∼
R2→ R2/2

∼

264 1 0 0 −5 3 8

0 1 0 −2 2 3

0 0 1 4 −3 −6

375⇒ A−1 =

264 −5 3 8

−2 2 3

4 −3 −6

375
3.2. Matrix Inverse: Take Two. Find A−1 using the cofactor representation. (Theorem 2 pg.318)

There are, of course, other ways to find A−1. The following method uses determinants and provides a general representation of an inverse

matrix, if it exists. First we must find det(A). Using the cofactor expansion of the determinant we have,

det(A) = 3 det

 
2 1

3 4

!
− 0 · det

 
6 7

3 4

!
+ 2 det

 
6 7

2 1

!
= 3(5)− 0(3) + 2(−8) = 15− 16 = −1

Using the cofactor formula we have,

A−1 =
1

det(A)

264 c11 c21 c31

c12 c22 c32

c13 c23 c33

375 =
1

−1

264 5 −3 −8

2 −2 −3

−4 3 6

375 =

264 −5 3 8

−2 2 3

4 −3 −6

375 ,
where cij = (−1)i+j det(Aij). Since, this method requires the use of determinants it is computationally intensive, but does highlight the

connection between det(A) = 0 and non-invertibility. A typical use of this method is to study how elements of A−1 changes with changes

to A.
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3.3. Check Step. Verify that this inverse matrix is correct.

It is easy to verify that we have found the correct matrix inverse of A. We have found A−1 using two different methods and gotten the

same answer but if we are still worried then we conduct the following matrix multiplication AA−1 = I. Doing so gives,

AA−1 =

264 3 6 7

0 2 1

2 3 4

375
264 −5 3 8

−2 2 3

4 −3 −6

375 =

264 1 0 0

0 1 0

0 0 1

375 = I,

which implies that A−1 is the inverse of A.

3.4. Solutions to Linear Systems. Using A−1 find the unique solution to Ax = b = [b1 b2 b3]t.

Since there is an inverse matrix for A there must exist a unique solution regardless of the choice of b ∈ R3. Algebraically we have,

Ax = b ⇐⇒ x = A−1b, where

x = A−1b

=

264 −5 3 8

−2 2 3

4 −3 −6

375
264 b1

b2

b3

375

=

264 −5b1 + 3b2 + 8b3

−2b1 + 2b2 + 3b3

4b1 − 3b2 − 6b3

375 .
4. Determinants

Given,

A =

264 1 a a2

1 b b2

1 c c2

375 .
4.1. Vandermonde Determinant. Show that the det(A) = (c− a)(c− b)(b− a).

This calculation is easiest done in conjunction with row-reduction. The following row-reduction,264 1 a a2

1 b b2

1 c c2

375 R2→ R2−R1

∼
R3→ R3−R1

264 1 a a2

0 b− a b2 − a2

0 c− a c2 − a2

375 R3→ R3− (c− a)

(b− a)
R2

∼

264 1 a a2

0 (b− a) b2

0 0 c2 − a2 − (c− a)(b2 − a2)/(b− a)

375 ,
implies that,

det(A) = 1 · (b− a) ·
„
c2 − a2 − (c− a)

b2 − a2

b− a

«
= (b− a)

„
(c− a)(c+ a)− (c− a)

(b− a)(b+ a)

b− a

«
= (b− a)(c− a) (c+ a− b+ a)

= (b− a)(c− a) (c− b)

4.2. Application. Determine which of the following sets of points can be uniquely interpolated by the polynomial p(t) = a0 + a1t+ a2t
2.

S1 = {(1, 12), (2, 15), (3, 16)}

S2 = {(1, 12), (1, 15), (3, 16)}

S3 = {(1, 12), (2, 15), (2, 15)}

First notice that even though the polynomial equation is nonlinear in the t-variable it is linear in the coefficients and p(t) =
ˆ
1 t t2

˜t ·
[a0 a1 a2]t. Every point, (ti, pi = p(ti)), given defines a new polynomial and in the case of three points we have the following linear system,264 1 t0 t20

1 t1 t21

1 t2 t22

375
264 a0

a1

a2

375 =

264 p0

p1

p2

375 .

http://en.wikipedia.org/wiki/Vandermonde_matrix
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Using the previous result we now have the interpretation that if any of the time values are the same then the determinant of the coefficient

matrix is zero and if a solution exists to the interpolation problem then this solution is not unique. Thus, of the three sets of points only

the set S1 admits a unique interpolating polynomial.

For completion we can apply some common sense to the remaining sets. Looking at S2 we see that the graph must pass through (1, 12)

and (1, 15). The vertical line test tells us no function can do this. Looking at S3 we see that the second and third point are the same. A

quick reduction shows that there is a free-variable in the augmented matrix. This implies that while there is only one line that connects

two points in space there are many quadratic polynomials that connect two points in space.

5. Rotation Transformations in R2 and R3

Given,

A(θ) =

"
cos(θ) − sin(θ)

sin(θ) cos(θ)

#
.

5.1. The Unit Circle. Show that the transformation Aî rotates î = [1 0]t counter-clockwise by an angle θ and defines a parametrization

of the unit circle. What matrix would undo this transformation?

The effect of the transformation applied to î is given by,

Aî =

"
cos(θ) − sin(θ)

sin(θ) cos(θ)

#"
1

0

#
=

"
cos(θ)

sin(θ)

#
,

which is a counterclockwise parameterization of the unit-circle for θ ∈ [0, 2π). To undo this consider the matrix At to get At î =

[cos(θ) − sin(θ)]t. This leads us to conclude that AAt = I, which means that A is a orthogonal transformation or a ridged change of

coordinates.

5.2. Determinant. Show that det(A) = 1.

det(A) = cos(θ) cos(θ)−− sin(θ) sin(θ) = 1

5.3. Orthogonality. Show that AtA = AAt = I.

To formally show the orthogonality we verify either of the previous multiplications.

AAt =

"
cos(θ) − sin(θ)

sin(θ) cos(θ)

#"
cos(θ) sin(θ)

− sin(θ) cos(θ)

#
=

"
cos2(θ) + sin2(θ) cos(θ) sin(θ)− cos(θ) sin(θ)

cos(θ) sin(θ)− cos(θ) sin(θ) cos2(θ) + sin2(θ)

#
= I

5.4. Rotations in R3. Given,

R1(θ) =

2664
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

3775 , R2(θ) =

2664
cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

3775 R3(θ) =

2664
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

3775 .
Describe the transformations defined by each of these matrices on vectors in R3.

It is best to think about this in terms of linear combinations of columns. Consider,

R1(θ)x =

2664
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

3775
264x1

x2

x3

375 = x1

2641

0

0

375+ x2

264 0

cos(θ)

sin(θ)

375+ x3

264 0

− sin(θ)

cos(θ)

375 = x1

2641

0

0

375+

264 0

A

"
x2

x3

#375 ,
which implies that R1 leaves the x1 component of the vector unchanged and rotates the x2, x3 component of the vector in the x2, x3−plane.

Similar arguments show that R2 leaves x2 unchanged and rotates the vector in the x1, x3−plane while R3 leave x3 and rotates in the

x1, x2−plane. This lays the ground-work for the so-called Euler angles, which provides a systematic way to rotates geometries in R3.

An interesting consequence of the relationship between rotations in R3 and matrix algebra is that since these matrices do not commute,

[R1,R2] 6= 0 for θ 6= 0, the order one conducts the rotations matter. 2

2To see this take a textbook and orient it so that the spine is facing you and the cover is facing up. Rotate the text clockwise π/2 about the z-axis

then rotate it π/2 about the y-axis. At this point I am looking at the back of the textbook and the text is upside-down. Now do the rotations in reverse

order and you will see the lack of commutivity.

http://en.wikipedia.org/wiki/Unit_circle 
http://en.wikipedia.org/wiki/Euler_angles
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