
PHGN 462 Homework 4 

 

1) There’s a general method for describing the polarization of electromagnetic waves using what are 

called Jones vectors.  We’ll restrict ourselves to describing the electric field in a wave, since once you 

know E and the direction in which the wave is traveling, you can easily find the orientation and 

amplitude of B (at least, I hope you can). 

Let’s say we have an E-field propagating along the z-axis with the form 
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Such a form is totally general, and allows for the possibility that the � ̂and �̂ components of the field 

are of different amplitudes and also of different phases with respect to one another.  We can factor out 

the part common to both components and write ��� in vector form as follows: 
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The term in parentheses has all the information that’s unique to a particular field, showing both the 

component amplitudes and phases.  This term is the Jones vector. 

The Jones vectors for horizontally and vertically polarized light with unit amplitude are ������� = ���� and  

������� = ����, respectively.  This pair defines a simple basis that can be used to express the electric field 

for any wave. 

a)  Consider the E-field whose real part is ��� = 7 cos(!" − $%) �̂ − 5 sin(!" − $%) �̂ (with implied 

units attached to the 7 and 5).  Figure out how to decompose this field in terms of ������� and �������.  By that 

I mean find the A and B such that ��� = *������� + +�������.  You may find it helpful to start by expressing 

��� in terms of a Jones vector.  And don’t forget that you can use imaginary coefficients if you need to.  

b)  An alternative basis for describing polarization is referred to as circular polarization.  The basis 

vectors (in Jones notation) are �,����� = �
√. ��� � and �/����� = �

√. � ����, describing left-circular and right-circular 

polarization respectively. 

Explain, using an appropriate combination of words, equations, and diagrams, why this basis is 

referred to as circular polarization.  It’s no great challenge to find the answer on the interwebs, so 

make sure your explanation is strong and is uniquely your own.  Also mention why those 
�

√. factors 

are there. 

c)  Express the E-field from part (a) in terms of �,����� and �/�����. 
Two things to take away from this problem:  1)  How to express polarization in general and 2) That 

circular polarization, while it sometimes sounds like an odd thing, is just another basis to work in, one 

that happens to come up a lot in optics labs.  

 



2)  We’ve seen plane waves and spherical waves (or will see them very soon), and they’re very nice 

and all, but it’d be really fantastic if there was a more confined solution to the wave equation.  A set 

of fields that traveled along some axis without being infinite in extent.  A beam, if you will.  Might 

such a thing exist? 

 

a)  A beam would have certain properties.  For example, it’d propagate primarily along a single axis, 

in much the same way that a plane wave does.  That means some component of the associated E-field 

would have a form such as: 
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where u is some as-yet-unknown spatial distribution and we’re defining ! = 4
5 .     

For a beam, u would probably have certain properties, too.  It’s likely that it’d vary slowly along the 

direction of propagation, barely changing at all on a length scale similar to 6.  And its variance in the 

axial direction would be small compared to its variance in transverse directions.  Together those 

features are encoded in the so-called paraxial approximations: 
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Using all of the above, show that the field envelope u for a beamlike solution to the wave equation 

will satisfy: 
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b)  The above can be solved in a rather brute force fashion via separation of variables, leading to an 

answer written in terms of Hermite polynomials.  It’s a very long process, though, so I’ll just give you 

the solution: 
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where w(z) is the spot size defined by, $(") = $�L1 + N 


KO.

, R(z) is the radius of curvature ,          

P(") = " N1 + 
K9

9O, and the constants $� and "E are called the beam waist and Rayleigh length, 

which are tied together via "E = Q�R9
S .  B@ is the nth Hermite polynomial. 

 

Each combination of n and m leads to a distinct allowed mode.  (T, U) = (0,0) is what’s known as 

the TEM00 mode, and is the mode in which we frequently try to operate lasers.   

There’s a ton of physics in the above equation, often involving tradeoffs between one beam parameter 

or another.  For example:  Take a look at the mode equation for TEM00 modes and tell me how 



focusing the beam affects collimation of the beam.  That is, if I focus the beam down to a smaller 

waist, does that result in a more or less well-collimated beam?  Explain how you know. 

 

c)  Let’s get a look at these modes by plotting the E-fields in Mathematica (or whatever platform you 

prefer).  Plot xz and xy cross sections of a few different modes and comment on what you see.  For the 

xz modes, show a snapshot at a particular time as opposed to a time average, so we can see the 

oscillations along z.  For the xy cross sections, do as you please.   

Note that you might have some dynamic range issues… the field values involved span enough orders 

of magnitude that Mathematica’s default color mapping will probably wash out some detail.  If it’s 

too washed out to be useful, fix it.  I used a logarithmic color mapping.  The code for that was easy to 

find on the interwebs.   

 

 

3)  Prepare a 12-minute peer lecture for your groupmates, as described in class.   

 

 


