Advanced Engineering Mathematics

Homework Three

Eigenproblems : Eigenvalues, Eigenvectors, Diagonalization, Self-Adjoint Operators

Text: 8.1-8.4

Lecture Notes: 7-8

Lecture Slide: N/A

Quote of Homework Three	
Raoul Duke : Nonsense. We came here to find the American Dream, and now we're right	
in the vortex you want to quit? You must realize that we've found the Main Nerve.	
Grisoni and	Gilliam : Fear and Loathing in Las Vegas (1998)

1. Eigenvalues and Eigenvectors

$$\mathbf{A}_{1} = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \quad \mathbf{A}_{2} = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}, \quad \mathbf{A}_{3} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{A}_{4} = \begin{bmatrix} .1 & .6 \\ .9 & .4 \end{bmatrix}, \quad \mathbf{A}_{5} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

1.1. Eigenproblems. Find all eigenvalues and eigenvectors of A_i for i = 1, 2, 3, 4, 5.

2. DIAGONALIZATION

2.1. Eigenbasis and Decoupled Linear Systems. Find the diagonal matrix \mathbf{D}_i and vector $\tilde{\mathbf{Y}}$ that completely decouples the system of linear differential equations $\frac{d\mathbf{Y}_i}{dt} = \mathbf{A}_i \mathbf{Y}_i$ for i = 3, 4, 5.

3. Regular Stochastic Matrices

For the *regular stochastic matrix* A_4 , define its associated steady-state vector, \mathbf{q} , to be such that $A_4 \mathbf{q} = \mathbf{q}$.

3.1. Limits of Time Series. Show that $\lim_{n \to \infty} \mathbf{A}_4^n \mathbf{x} = \mathbf{q}$ where $\mathbf{x} \in \mathbb{R}^2$ such that $x_1 + x_2 = 1$.

4. Orthogonal Diagonalization and Spectral Decomposition

Recall that if $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ then their inner-product is defined to be $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathsf{H}} \mathbf{y} = \bar{\mathbf{x}}^{\mathsf{T}} \mathbf{y}$. In this case, the 'length' of the vector is $|\mathbf{x}| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

4.1. Self-Adjointness. Show that A_5 is a self-adjoint matrix.

4.2. Orthogonal Eigenvectors. Show that the eigenvectors of A_5 are orthogonal with respect to the inner-product defined above.

4.3. Orthonormal Eigenbasis. Using the previous definition for length of a vector and the eigenvectors of the self-adjoint matrix, construct an *orthonormal basis* for \mathbb{C}^2 .

4.4. Orthogonal Diagonalization. Show that $\mathbf{U}^{\text{H}} = \mathbf{U}^{-1}$, where \mathbf{U} is a matrix containing the normalized eigenvectors of \mathbf{A}_5 .

4.5. Spectral Decomposition. Show that $\mathbf{A}_5 = \lambda_1 \mathbf{x}_1 \mathbf{x}_1^{\mathrm{H}} + \lambda_2 \mathbf{x}_2 \mathbf{x}_2^{\mathrm{H}}$.

5. Introduction of Self-Adjoint Operators

A Sturm-Liouville (SL) Problem is defined by the linear transformation L,

(1)
$$Lu = \frac{1}{w(x)} \left(-\frac{d}{dx} \left[p(x) \frac{du}{dx} \right] + q(x)u \right),$$

whose nontrivial solutions must satisfy the boundary conditions,

(2)
$$k_1 u(a) + k_2 u'(a) = 0$$

(3)
$$l_1 u(b) + l_2 u'(b) = 0.$$

5.1. Equations in SL Form. Let p(x) = 1, q(x) = 0, w(x) = 1, $k_1 = l_1 = 0$, $k_2 = l_2 = 1$ and a = 0, $b = \pi$. Show that the eigenvalue/eigenfunction pairs to the SLP are defined by $u_n(x) = c_n \cos(\sqrt{\lambda_n x})$, $c_n \in \mathbb{R}$, $\lambda_n = n^2$, for $n = 0, 1, 2, 3, \ldots$

5.2. Orthogonality of Eigenfunctions. Using the abstract inner-product defined in homework 2 problem 5.2, $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx$, show that the previous eigenfunctions form an orthogonal set. That is, show that $\langle u_n, u_m \rangle = \pi \delta_{nm}$ for $n = 1, 2, 3, \ldots$, and $m = 1, 2, 3, \ldots$