Quote of Homework Three	
Raoul Duke: Nonsense. We came here to find the American Dream, and now we're right in the vortex you want to quit? You must realize that we've found the Main Nerve.	
	Grisoni and Gilliam : Fear and Loathing in Las Vegas (1998)

1. Eigenvalues and Eigenvectors

$$
\mathbf{A}_{1}=\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{rr}
3 & 1 \\
-2 & 1
\end{array}\right], \quad \mathbf{A}_{3}=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2
\end{array}\right], \quad \mathbf{A}_{4}=\left[\begin{array}{ll}
.1 & .6 \\
.9 & .4
\end{array}\right], \quad \mathbf{A}_{5}=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]
$$

1.1. Eigenproblems. Find all eigenvalues and eigenvectors of \mathbf{A}_{i} for $i=1,2,3,4,5$.

2. Diagonalization

2.1. Eigenbasis and Decoupled Linear Systems. Find the diagonal matrix \mathbf{D}_{i} and vector $\tilde{\mathbf{Y}}$ that completely decouples the system of linear differential equations $\frac{d \mathbf{Y}_{i}}{d t}=\mathbf{A}_{i} \mathbf{Y}_{i}$ for $i=3,4,5$.

3. Regular Stochastic Matrices

For the regular stochastic matrix \mathbf{A}_{4}, define its associated steady-state vector, \mathbf{q}, to be such that $\mathbf{A}_{4} \mathbf{q}=\mathbf{q}$.
3.1. Limits of Time Series. Show that $\lim _{n \rightarrow \infty} \mathbf{A}_{4}^{n} \mathbf{x}=\mathbf{q}$ where $\mathbf{x} \in \mathbb{R}^{2}$ such that $x_{1}+x_{2}=1$.

4. Orthogonal Diagonalization and Spectral Decomposition

Recall that if $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ then their inner-product is defined to be $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\mathrm{H}} \mathbf{y}=\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{y}$.
4.1. Self-Adjointness. Show that \mathbf{A}_{5} is a self-adjoint matrix.
4.2. Orthogonal Eigenvectors. Show that the eigenvectors of \mathbf{A}_{5} are orthogonal with respect to the inner-product defined above.
4.3. Orthonormal Eigenbasis. Using the previous definition for length of a vector and the eigenvectors of the self-adjoint matrix, construct an orthonormal basis for \mathbb{C}^{2}.
4.4. Orthogonal Diagonalization. Show that $\mathbf{U}^{\mathrm{H}}=\mathbf{U}^{-1}$, where \mathbf{U} is a matrix containing the normalized eigenvectors of \mathbf{A}_{4}.
4.5. Spectral Decomposition. Show that $\mathbf{A}_{4}=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{H}}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{\mathrm{H}}$.

5. Introduction to Self-Adjoint Operators

Let L be a linear transformation defined by,

$$
\begin{align*}
L u=\frac{1}{w(x)}\left(-\frac{d}{d x}\left[p(x) \frac{d u}{d x}\right]+q(x) u\right) & , \text { where } x \in(a, b) \text { such that, } \tag{1}\\
k_{1} u(a)+k_{2} u^{\prime}(b) & =0 \tag{2}\\
l_{1} u(b)+l_{2} u^{\prime}(b) & =0 . \tag{3}
\end{align*}
$$

Finding all nontrivial eigenfunctions of (1), which satisfy the boundary conditions (2)-(3) is called a Sturm-Liouville Problem (SLP).
5.1. A Simple SLP. Let $p(x)=1, q(x)=0, w(x)=1, k_{1}=l_{1}=0, k_{2}=l_{2}=1$ and $a=0, b=\pi$. Show that the eigenvalue/eigenfunction pairs to the SLP are defined by $u_{n}(x)=\cos \left(\sqrt{\lambda_{n}} x\right), \lambda_{n}=n^{2}$, for $n=0,1,2,3, \ldots$.
5.2. Orthogonality of Eigenfunctions. Using the abstract inner-product defined in homework 2 problem $5.2,\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$, show that the previous eigenfunctions form an orthogonal set. That is, show that $\left\langle u_{n}, u_{m}\right\rangle=\pi \delta_{n m}$ for $n=1,2,3, \ldots$, and $m=1,2,3, \ldots$.

