
Advanced Engineering Mathematics Homework Three

Eigenproblems : Eigenvalues, Eigenvectors, Diagonalization, Self-Adjoint Operators

Text: 8.1-8.4 Lecture Slides: 7-8

Quote of Homework Three

Raoul Duke: Nonsense. We came here to find the American Dream, and now we’re right

in the vortex you want to quit? You must realize that we’ve found the Main Nerve.

Grisoni and Gilliam : Fear and Loathing in Las Vegas (1998)
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1.1. Eigenproblems. Find all eigenvalues and eigenvectors of Ai for i = 1, 2, 3, 4, 5.

2. Diagonalization

2.1. Eigenbasis and Decoupled Linear Systems. Find the diagonal matrix Di and vector Ỹ that completely decouples the system of

linear differential equations
dYi

dt
= AiYi for i = 3, 4, 5.

3. Regular Stochastic Matrices

For the regular stochastic matrix A4, define its associated steady-state vector, q, to be such that A4q = q.

3.1. Limits of Time Series. Show that lim
n→∞

An
4x = q where x ∈ R2 such that x1 + x2 = 1.

4. Orthogonal Diagonalization and Spectral Decomposition

Recall that if x,y ∈ Cn then their inner-product is defined to be 〈x,y〉 = xhy = x̄ty.

4.1. Self-Adjointness. Show that A5 is a self-adjoint matrix.

4.2. Orthogonal Eigenvectors. Show that the eigenvectors of A5 are orthogonal with respect to the inner-product defined above.

4.3. Orthonormal Eigenbasis. Using the previous definition for length of a vector and the eigenvectors of the self-adjoint matrix,

construct an orthonormal basis for C2.

4.4. Orthogonal Diagonalization. Show that Uh = U−1, where U is a matrix containing the normalized eigenvectors of A4.

4.5. Spectral Decomposition. Show that A4 = λ1x1x
h
1 + λ2x2x

h
2.

5. Introduction to Self-Adjoint Operators

Let L be a linear transformation defined by,

Lu =
1

w(x)

„
− d

dx

»
p(x)

du

dx

–
+ q(x)u

«
, where x ∈ (a, b) such that,(1)

k1u(a) + k2u
′(b) = 0(2)

l1u(b) + l2u
′(b) = 0.(3)

Finding all nontrivial eigenfunctions of (1), which satisfy the boundary conditions (2)-(3) is called a Sturm-Liouville Problem (SLP).

5.1. A Simple SLP. Let p(x) = 1, q(x) = 0, w(x) = 1, k1 = l1 = 0, k2 = l2 = 1 and a = 0, b = π. Show that the eigenvalue/eigenfunction

pairs to the SLP are defined by un(x) = cos(
√
λnx), λn = n2, for n = 0, 1, 2, 3, . . . .

5.2. Orthogonality of Eigenfunctions. Using the abstract inner-product defined in homework 2 problem 5.2, 〈f, g〉 =

Z π

−π
f(x)g(x)dx,

show that the previous eigenfunctions form an orthogonal set. That is, show that 〈un, um〉 = πδnm for n = 1, 2, 3, . . . , and m = 1, 2, 3, . . . .
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