Homework 4, due Tuesday 4/11

Feel free to use Mathematica.

1. Let $\psi_{n}(x)=c_{n} e^{-\alpha^{2} x^{2} / 2} H_{n}(\alpha x)$ where $\alpha^{2}=\frac{m \omega}{\hbar}$. See equation 4.16 in the book. Show that ψ_{0}, ψ_{1} and ψ_{2} are orthogonal to one another.
2. Evaluate $\langle x\rangle,\langle p\rangle,\left\langle x^{2}\right\rangle$ and $\left\langle p^{2}\right\rangle$ for the $n=1$ harmonic oscillator state.
3. Consider a classical oscillator whose energy is $\hbar \omega / 2$. Find the limit of its motion (A in the notes). What is the probability that a quantum particle with the same energy will be found more than twice this far from the origin?
4. Apply separation of variables to the Schrodinger equation for a 3D potential well defined by: $V(x, y, z)=V(x)+V(y)+V(z)$ where $V\left(x_{i}\right)=0$ if $0 \leq x_{i} \leq L_{i}$ and infinity otherwise. Derive the expression for the wavefunctions $\psi_{n_{1}, n_{2}, n_{3}}(\mathbf{r})$ and $E_{n_{1}, n_{2}, n_{3}}$.
5. Suppose that $\psi(x, 0)=e^{i p_{0} x / \hbar} \psi_{0}(x)$. Find the wavefunction as a function of time. What is the average energy of the oscillator?
