
Chapter 4

Fourier Analysis

4.1 Motivation

At the beginning of this course, we saw that superposition of functions in terms of sines
and cosines was extremely useful for solving problems involving linear systems. For
instance, when we studied the forced harmonic oscillator, we first solved the problem
by assuming the forcing function was a sinusoid (or complex exponential). This turned
out to be easy. We then argued that since the equations were linear this was enough to
let us build the solution for an arbitrary forcing function if only we could represent this
forcing function as a sum of sinusoids. Later, when we derived the continuum limit of
the coupled spring/mass system we saw that separation of variables led us to a solution,
but only if we could somehow represent general initial conditions as a sum of sinusoids.
The representation of arbitrary functions in terms of sines and cosines is called Fourier

analysis.

Jean Baptiste Joseph Fourier. Born: 21 March 1768 in Auxerre. Died:
16 May 1830 in Paris. Fourier trained as a priest and nearly lost his
head (literally) in the French revolution. He is best known for his
work on heat conduction. Fourier established the equation governing
diffusion and used infinite series of trigonometric functions to solve it.
Fourier was also a scientific adviser to Napoleon’s army in Egypt.
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4.2 The Fourier Series

So, the motivation for further study of such a Fourier superposition is clear. But there
are other important reasons as well. For instance, consider the data shown in Figure 4.1.

These are borehole tiltmeter measurements. A tiltmeter is a device that measures the
local tilt relative to the earth’s gravitational field. The range of tilts shown here is
between -40 and 40 nanoradians! (There are 2 π radians in 360 degrees, so this range
corresponds to about 8 millionths of a degree.) With this sensitivity, you would expect
that the dominant signal would be due to earth tides. So buried in the time-series on the
top you would expect to see two dominant frequencies, one that was diurnal (1 cycle per
day) and one that was semi-diurnal (2 cycles per day). If we somehow had an automatic
way of representing these data as a superposition of sinusoids of various frequencies, then
might we not expect these characteristic frequencies to manifest themselves in the size of
the coefficients of this superposition? The answer is yes, and this is one of the principle
aims of Fourier analysis. In fact, the power present in the data at each frequency is
called the power spectrum. Later we will see how to estimate the power spectrum using
a Fourier transform.

You’ll notice in the tiltmeter spectrum that the two peaks (diurnal and semi-diurnal
seem to be split; i.e., there are actually two peaks centered on 1 cycle/day and two
peaks centered on 2 cycles/day. Consider the superposition of two sinusoids of nearly
the same frequency:

sin((ω − ǫ)t) + sin((ω + ǫ)t).

Show that this is equal to
2 cos(ǫt) sin(ωt).

Interpret this result physically, keeping in mind that the way we’ve set the problem
up, ǫ is a small number compared to ω. It might help to make some plots. Once
you’ve figured out the interpretation of this last equation, do you see evidence of the
same effect in the tiltmeter data?

There is also a drift in the tiltmeter. Instead of the tides fluctuating about 0 tilt,
they slowly drift upwards over the course of 50 days. This is likely a drift in the
instrument and not associated with any tidal effect. Think of how you might correct

the data for this drift.

As another example Figure 4.2 shows 50 milliseconds of sound (a low C) made by a
soprano saxophone and recorded on a digital oscilloscope. Next to this is the estimated
power spectrum of the same sound. Notice that the peaks in the power occur at integer
multiples of the frequency of the first peak (the nominal frequency of a low C).
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Figure 4.1: Borehole tiltmeter measurements. Data courtesy of Dr. Judah Levine (see
[?] for more details). The plot on the top shows a 50 day time series of measurements.
The figure on the bottom shows the estimated power in the data at each frequency over
some range of frequencies. This is known as an estimate of the power spectrum of the
data. Later we will learn how to compute estimates of the power spectrum of time series
using the Fourier transform. Given what we know about the physics of tilt, we should
expect that the diurnal tide (once per day) should peak at 1 cycle per day, while the
semi-diurnal tide (twice per day) should peak at 2 cycles per day. This sort of analysis
is one of the central goals of Fourier theory.
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Figure 4.2: On the left is .05 seconds of someone playing low C on a soprano saxophone.
On the right is the power spectrum of these data. We’ll discuss later how this computation
is made, but essentially what you’re seeing the power as a function of frequency. The first
peak on the right occurs at the nominal frequency of low C. Notice that all the higher
peaks occur at integer multiples of the frequency of the first (fundamental) peak.

Definition of the Fourier Series

For a function periodic on the interval [−l, l], the Fourier series is defined to be:

f(x) =
a0

2
+

∞
∑

n=1

an cos(nπx/l) + bn sin(nπx/l). (4.2.1)

or equivalently,

f(x) =
∞
∑

n=−∞

cne
inπx/l. (4.2.2)

We will see shortly how to compute these coefficients. The connection between the real
and complex coefficients is:

ck =
1

2
(ak − ibk) c−k =

1

2
(ak + ibk). (4.2.3)

In particular notice that the sine/cosine series has only positive frequencies, while the
exponential series has both positive and negative. The reason is that in the former case
each frequency has two functions associated with it. If we introduce a single complex
function (the exponential) we avoid this by using negative frequencies. In other words,
any physical vibration always involves two frequencies, one positive and one negative.

Later on you will be given two of the basic convergence theorems for Fourier series. Now
let’s look at some examples.
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Figure 4.3: Absolute value function.

4.2.1 Examples

Let f(x) = abs(x), as shown in Figure 4.3. The first few terms of the Fourier series are:

1

2
− 4 cos(π x)

π2
− 4 cos(3 π x)

9 π2
− 4 cos(5 π x)

25 π2
(4.2.4)

This approximation is plotted in Figure 4.3.

Observations

Note well that the convergence is slowest at the origin, where the absolute value function
is not differentiable. (At the origin, the slope changes abruptly from -1 to +1. So the
left derivative and the right derivative both exist, but they are not the same.) Also, as
for any even function (i.e., f(x) = f(−x)) only the cosine terms of the Fourier series are
nonzero.

Suppose now we consider an odd function (i.e., f(x) = −f(−x)), such as f(x) = x. The
first four terms of the Fourier series are

2 sin(π x)

π
− sin(2 π x)

π
+

2 sin(3 π x)

3 π
− sin(4 π x)

2 π
(4.2.5)

Here you can see that only the sine terms appear, and no constant (zero-frequency) term.
A plot of this approximation is shown in Figure 4.4.

So why the odd behavior at the endpoints? It’s because we’ve assume the function is
periodic on the interval [−1, 1]. The periodic extension of f(x) = x must therefore have
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Figure 4.4: First four nonzero terms of the Fourier series of the function f(x) = abs(x).
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Figure 4.5: First four nonzero terms of the Fourier series of the function f(x) = x.
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Figure 4.6: Periodic extension of the function f(x) = x relative to the interval [0, 1].

a sort of sawtooth appearance. In other words any non-periodic function defined on a
finite interval can be used to generate a periodic function just by cloning the function
over and over again. Figure 4.6 shows the periodic extension of the function f(x) = x
relative to the interval [0, 1]. It’s a potentially confusing fact that the same function will
give rise to different periodic extensions on different intervals. What would the periodic
extension of f(x) = x look like relative to the interval [−.5, .5]?

4.3 Superposition and orthogonal projection

Now, recall that for any set of N linearly independent vectors xi in RN , we can represent
an arbitrary vector z in RN as a superposition

z = c1x1 + c2x2 + · · ·+ cNxN , (4.3.1)

which is equivalent to the linear system

z = X · c (4.3.2)

where X is the matrix whose columns are the xi vectors and c is the vector of unknown
expansion coefficients. As you well know, matrix equation has a unique solution c if and
only if the xi are linearly independent. But the solution is especially simple if the xi are
orthogonal. Suppose we are trying to find the coefficients of

z = c1q1 + c2q2 + · · ·+ qN , (4.3.3)

when qi · qj = δij . In this case we can find the coefficients easily by projecting onto the
orthogonal directions:

ci = qi · z, (4.3.4)
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or, in the more general case where the q vectors are orthogonal but not necessarily
normalized

ci =
qi · z
qi · qi

. (4.3.5)

We have emphasized throughout this course that functions are vectors too, they just
happen to live in an infinite dimensional vector space (for instance, the space of square
integrable functions). So it should come as no surprise that we would want to consider a
formula just like 4.3.3, but with functions instead of finite dimensional vectors; e.g.,

f(x) = c1q1(x) + c2q2(x) + · · ·+ cnqn(x) + · · · . (4.3.6)

In general, the sum will require an infinite number of coefficients ci, since a function has
an infinite amount of information. (Think of representing f(x) by its value at each point
x in some interval.) Equation 4.3.6 is nothing other than a Fourier series if the q(x)
happen to be sinusoids. Of course, you can easily think of functions for which all but a
finite number of the coefficients will be zero; for instance, the sum of a finite number of
sinusoids.

Now you know exactly what is coming. If the basis functions qi(x) are “orthogonal”, then
we should be able to compute the Fourier coefficients by simply projecting the function
f(x) onto each of the orthogonal “vectors” qi(x). So, let us define a dot (or inner) product
for functions on an interval [−l, l] (this could be an infinite interval)

(u, v) ≡
∫ l

−l
u(x)v(x)dx. (4.3.7)

Then we will say that two functions are orthogonal if their inner product is zero.

Now we simply need to show that the sines and cosines (or complex exponentials) are
orthogonal. Here is the theorem. Let φk(x) = sin(kπx/l) and ψk(x) = cos(kπx/l). Then

(φi, φj) = (ψi, ψj) = lδij (4.3.8)

(φi, ψj) = 0. (4.3.9)

The proof, which is left as an exercise, makes use of the addition formulae for sines and
cosines. (If you get stuck, the proof can be found in [2], Chapter 10.) A similar result
holds for the complex exponential, where we define the basis functions as ξk(x) = eikπx/l.

Using Equations 4.3.8 and 4.3.9 we can compute the Fourier coefficients by simply pro-
jecting f(x) onto each orthogonal basis vector:

an =
1

l

∫ l

−l
f(x) cos(nπx/l)dx =

1

l
(f, ψn), (4.3.10)

and

bn =
1

l

∫ l

−l
f(x) sin(nπx/l)dx =

1

l
(f, φn). (4.3.11)
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Or, in terms of complex exponentials

cn =
1

2l

∫ l

−l
f(x)e−inπx/ldx. (4.3.12)

4.4 The Fourier Integral

For a function defined on any finite interval, we can use the Fourier series, as above. For
functions that are periodic on some other interval than [−l, l] all we have to do to use
the above formulae is to make a linear change of variables so that in the new coordinate
the function is defined on [−l, l]. And for functions that are not periodic at all, but still
defined on a finite interval, we can fake the periodicity by replicating the function over
and over again. This is called periodic extension.

OK, so we have a function that is periodic on an interval [−l, l]. Looking at its Fourier
series (either Equation 4.2.1 or 4.2.2) we see straight away that the frequencies present
in the Fourier synthesis are

f1 =
1

2l
, f2 =

2

2l
, f3 =

3

2l
, · · · , fk =

k

2l
· · · (4.4.1)

Suppose we were to increase the range of the function to a larger interval [−L,L] trivially
by defining it to be zero on [−L,−l] and [l, L]. To keep the argument simple, let us
suppose that L = 2l. Then we notice two things straight away. First, the frequencies
appearing in the Fourier synthesis are now

f1 =
1

2L
, f2 =

2

2L
, f3 =

3

2L
, · · · , fk =

k

2L
· · · (4.4.2)

So the frequency interval is half what it was before. And secondly, we notice that half
of the Fourier coefficients are the same as before, with the new coefficients appearing
mid-way between the old ones. Imagine continuing this process indefinitely. The Fourier
coefficients become more and more densely distributed, until, in the limit that L → ∞,
the coefficient sequence cn becomes a continuous function. We call this function the
Fourier transform of f(x) and denote it by F (k). In this case, our Fourier series

f(x) =
∞
∑

n=−∞

cne
inπx/l

becomes

f(x) =
1√
2π

∫

∞

−∞

F (k)eikxdk (4.4.3)

with the “coefficient” function F (k) being determined, once again, by orthogonal projec-
tion:

F (k) =
1√
2π

∫

∞

−∞

f(x)e−ikxdx (4.4.4)
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Normalization

A function f(t) is related to its Fourier transform f(ω) via:

f(t) =
1√
2π

∫

∞

−∞

F (ω)eiωt dω (4.4.5)

and

F (ω) =
1√
2π

∫

∞

−∞

f(t)e−iωt dt (4.4.6)

It doesn’t matter how we split up the 2π normalization. For example, in the interest
of symmetry we have defined both the forward and inverse transform with a 1/

√
2π out

front. Another common normalization is

f(t) =
1

2π

∫

∞

−∞

F (ω)eiωt dω (4.4.7)

and
F (ω) =

∫

∞

−∞

f(t)e−iωt dt. (4.4.8)

It doesn’t matter how we do this as long as we’re consistent. We could get rid of the
normalization altogether if we stop using circular frequencies ω in favor of f measured
in hertz or cycles per second. Then we have

g(t) =
∫

∞

−∞

G(f)e2πift df (4.4.9)

and
G(f) =

∫

∞

−∞

g(t)e−2πift dt (4.4.10)

Here, using time and frequency as variables, we are thinking in terms of time series, but
we could just as well use a distance coordinate such as x and a wavenumber k:

f(x) =
1

2π

∫

∞

−∞

F (k)eikx dk (4.4.11)

with the inverse transformation being

F (k) =
∫

∞

−∞

f(x)e−ikx dx. (4.4.12)

Invertibility: the Dirichlet Kernel

These transformations from time to frequency or space to wavenumber are invertible in
the sense that if we apply one after the other we recover the original function. To see
this plug Equation (4.4.12) into Equation (4.4.11):

f(x) =
1

2π

∫

∞

−∞

dk
∫

∞

−∞

f(x′)e−ik(x′
−x) dx′. (4.4.13)
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If we define the kernel function K(x− x′, µ) such that

K(x′ − x, µ) =
1

2π

∫ µ

−µ
e−ik(x′

−x) dk =
sinµ(x′ − x)

π(x′ − x)
(4.4.14)

then we have
f(x) =

∫

∞

−∞

f(x′)K(x′ − x)dx′ (4.4.15)

where K(x′−x) is the limit (assuming that it exists) of K(x′−x, µ) as µ→ ∞. In order
for this to be true K(x′ − x) will have to turn out to be a Dirac delta function.

In one space dimension, the Dirac delta function is defined by the property that for
any interval I, f(x) =

∫

I f(y)δ(y − x)dy if x is in I and zero otherwise. (We can
also write this as f(0) =

∫

I f(y)δ(y)dy.) No ordinary function can have this property
since it implies that δ(y− x) must be zero except when x = y. If you try integrating
any function which is finite at only one point (and zero everywhere else), then you
always get zero. This means that

∫

I f(y)δ(y − x)dy would always be zero if δ(0) is
finite. So δ(0) must be infinite. And yet the function δ(x) itself must integrate to
1 since if we let f(x) = 1, then the basic property of the delta function says that:
1 =

∫

δ(y)dy. So we are forced to conclude that δ(x) has the strange properties that
it is zero, except when x = 0, it is infinite when x = 0 and that it integrates to 1.
This is no ordinary function.

The Dirac delta function is named after the Nobel prize-winning En-
glish physicist Paul A.M. Dirac (born August 1902, Bristol, England;
died October 1984, Tallahassee, Florida). Dirac was legendary for
making inspired physical predictions based on abstract arguments.
His book Principals of Quantum Mechanics was one of the most in-
fluential scientific books of the 20th century. He got the Nobel Prize
in Physics in 1933. Amazingly, Dirac had published 11 significant pa-
pers before his completed his PhD work. Along with Newton, Dirac
is buried in Westminster Abbey.

We won’t attempt to prove that the kernel function converges to a delta function and
hence that the Fourier transform is invertible; you can look it up in most books on
analysis. But Figure 4.7 provides graphical evidence. We show plots of this kernel
function for x = 0 and four different values of µ, 10, 100, 1000, and 10000. It seems pretty
clear that in the limit that µ→ ∞, the function K becomes a Dirac delta function.

4.4.1 Examples

Let’s start with an easy but interesting example. Suppose we want the compute the
Fourier transform of a box-shaped function. Let f(x) be equal to 1 for x in the interval
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Figure 4.7: The kernel sinµx/πx for µ = 10, 100, 1000, and 10000.

[−1, 1] and 0 otherwise. So we need to compute

∫ 1

−1
e−ikxdx =

2 sin k

k
.

This function is shown in Figure 4.8 and is just the Dirichlet kernel for µ = 1, centered
about the origin.1

Here is a result which is a special case of a more general theorem telling us how the
Fourier transform scales. Let f(x) = e−x2/a2

. Here a is a parameter which corresponds
to the width of the bell-shaped curve. Make a plot of this curve. When a is small, the
curve is relatively sharply peaked. When a is large, the curve is broadly peaked. Now
compute the Fourier transform of f :

F (k) ∝
∫

∞

−∞

e−x2/a2

e−ikxdx.

The trick to doing integrals of this form is to complete the square on the exponentials.
You want to write the whole thing as an integral of the form

∫

∞

−∞

e−z2

dz.

As you’ll see shortly, this integral can be done analytically. The details will be left as an
exercise, here we will just focus on the essential feature, the exponential.

e−x2/a2

e−ikx = e−1/a2[(x+ika2/2)2+(ka2/2)2].
1To evaluate the limit of this function at k = 0, use L’Hôpital’s rule.
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Figure 4.8: The Fourier transform of the box function.

So the integral reduces to

ae−k2a2/4
∫

∞

−∞

e−z2

dz =
√
πae−k2a2/4.

(The
√
π will come next.) So we see that in the Fourier domain the factor of a2 appears

in the numerator of the exponential, whereas in the original domain, it appeared in
the denominator. Thus, making the function more peaked in the space/time domain
makes the Fourier transform more broad; while making the function more broad in the
space/time domain, makes it more peaked in the Fourier domain. This is a very important
idea.

Now the trick to doing the Gaussian integral. Since

H =
∫

∞

−∞

e−x2

dx

H2 =
[
∫

∞

−∞

e−x2

dx
] [

∫

∞

−∞

e−y2

dy
]

=
∫

∞

−∞

∫

∞

−∞

e−(x2+y2) dx dy.

Therefore

H2 =
∫

∞

0

∫ 2π

0
e−r2

r dr dθ =
1

2

∫

∞

0

∫ 2π

0
e−ρ dρ dθ = π

So H =
√
π.

4.4.2 Some Basic Theorems for the Fourier Transform

It is very useful to be able think of the Fourier transform as an operator acting on
functions. Let us define an operator Φ via

Φ[f ] = F (4.4.16)
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where
F (ω) =

∫

∞

−∞

f(t)e−iωt dt. (4.4.17)

Then it is easy to see that Φ is a linear operator

Φ[c1f1 + c2f2] = c1Φ[f1] + c2Φ[f2]. (4.4.18)

Next, if f (k) denotes the k-th derivative of f , then

Φ[f (k)] = (iω)kΦ[f ] k = 1, 2, . . . (4.4.19)

This result is crucial in using Fourier analysis to study differential equations. Next,
suppose c is a real constant, then

Φ[f(t− c)] = e−icwΦ[f ] (4.4.20)

and
Φ[eictf(t)] = F (t− c) (4.4.21)

where F = Φ(f). And finally, we have the convolution theorem. For any two functions
f(t) and g(t) with F = Φ(f) and G = Φ(g), we have

Φ(f)Φ(g) = Φ[f ∗ g] (4.4.22)

where “*” denotes convolution:

[f ∗ g](t) =
∫

∞

−∞

f(τ)g(t− τ)dτ. (4.4.23)

The convolution theorem is one of the most important in time series analysis. Convolu-
tions are done often and by going to the frequency domain we can take advantage of the
algorithmic improvements of the fast Fourier transform algorithm (FFT).

The proofs of all these but the last will be left as an exercise. The convolution theo-
rem is worth proving. Start by multiplying the two Fourier transforms. We will throw
caution to the wind and freely exchange the orders of integration. Also, let’s ignore the
normalization for the moment:

F (ω)G(ω) =
∫

∞

−∞

f(t)e−iωtdt
∫

∞

−∞

g(t′)e−iωt′dt′ (4.4.24)

=
∫

∞

−∞

∫

∞

−∞

e−iω(t+t′)f(t)g(t′)dt dt′ (4.4.25)

=
∫

∞

−∞

∫

∞

−∞

e−iωτf(t)g(τ − t)dt dτ (4.4.26)

=
∫

∞

−∞

e−iωτ
[
∫

∞

−∞

f(t)g(τ − t)dt
]

dτ. (4.4.27)

This completes the proof, but now what about the normalization? If we put the symmet-
ric 1/

√
2π normalization in front of both transforms, we end up with a left-over factor of
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1/
√

2π because we started out with two Fourier transforms and we ended up with only
one and a convolution. On the other hand, if we had used an asymmetric normaliza-
tion, then the result would be different depending on whether we put the 1/(2π) on the
forward or inverse transform. This is a fundamental ambiguity since we can divide up
the normalization anyway we want as long as the net effect is 1/(2π). This probably the
best argument for using f instead of ω since then the 2πs are in the exponent and the
problem goes away.

4.5 The Sampling Theorem

Now returning to the Fourier transform, suppose the spectrum of our time series f(t) is
zero outside of some symmetric interval [−2πfs, 2πfs] about the origin.2 In other words,
the signal does not contain any frequencies higher than fs hertz. Such a function is said
to be band limited; it contains frequencies only in the band [−2πfs, 2πfs]. Clearly a band
limited function has a finite inverse Fourier transform

f(t) =
1

2π

∫ 2πfs

−2πfs

F (ω)e−iωt dω. (4.5.1)

sampling frequencies and periods

fs is called the sampling frequency. Hence the sampling period is Ts ≡ 1/fs. It is
sometimes convenient to normalize frequencies by the sampling frequency. Then the
maximum normalized frequency is 1:

f̂ =
ω̂

2π
= fTs = f/fs.

Since we are now dealing with a function on a finite interval we can represent it as a
Fourier series:

F (ω) =
∞
∑

n=−∞

φne
iωn/2fs (4.5.2)

where the Fourier coefficients φn are to be determined by

φn =
1

4πfs

∫ 2πfs

−2πfs

F (ω)e−iωn/2fs dω. (4.5.3)

2In fact the assumption that the interval is symmetric about the origin is made without loss of
generality, since we can always introduce a change of variables which maps an arbitrary interval into a
symmetric one centered on 0.
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Comparing this result with our previous work we can see that

φn =
f(n/2fs)

2fs
(4.5.4)

where f(n/2fs) are the samples of the original continuous time series f(t). Putting all
this together, one can show that the band limited function f(t) is completely specified
by its values at the countable set of points spaced 1/2fs apart:

f(t) =
1

4πfs

∞
∑

n=−∞

f(n/2fs)
∫ 2πfs

−2πfs

ei(ωn/2fs−ωt) dω

=
∞
∑

n=−∞

f(n/2fs)
sin(π(2fst− n))

π(2fst− n)
. (4.5.5)

The last equation is known as the Sampling Theorem. Notice that the function sin x/x
appears here too. Since this function appears frequently it is given a special name, it is
called the sinc function:

sinc(x) =
sinx

x
.

And we know that the sinc function is also the Fourier transform of a box-shaped func-
tion. So the sampling theorem says take the value of the function, sampled every 1/2fs,
multiply it by a sinc function centered on that point, and then sum these up for all the
samples.

It is worth repeating for emphasis: any band limited function is completely determined
by its samples chosen 1/2fs apart, where fs is the maximum frequency contained in the
signal. This means that in particular, a time series of finite duration (i.e., any real time
series) is completely specified by a finite number of samples. It also means that in a
sense, the information content of a band limited signal is infinitely smaller than that of a
general continuous function. So if our band-limited signal f(t) has a maximum frequency
of fs hertz, and the length of the signal is T , then the total number of samples required
to describe f is 2fsT .

A sampling exercise

Consider the continuous sinusoidal signal:

x(t) = A cos(2πft+ φ)

Suppose we sample this signal at a sampling period of Ts. Let us denote the discrete
samples of the signal with square brackets:

x[n] ≡ x(nTs) = A cos(2πfnTs + φ).
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Now consider a different sinusoid of the same amplitude and phase, but sampled at a
frequency of f + ℓfs, where ℓ is an integer and fs = 1/Ts. Let the samples of this second
sinusoid be denoted by y[n]. Show that x[n] = y[n]. This is an example of aliasing.
These two sinusoids have exactly the same samples, so the frequency of one appears to
be the same.

The sampling theorem is due to Harry Nyquist, a researcher at Bell Labs in New
Jersey. In a 1928 paper Nyquist laid the foundations for the sampling of continuous
signals and set forth the sampling theorem. Nyquist was born on February 7, 1889
in Nilsby, Sweden and emigrated to the US in 1907. He got his PhD in Physics from
Yale in 1917. Much of Nyquist’s work in the 1920’s was inspired by the telegraph.
In addition to his work in sampling, Nyquist also made an important theoretical
analysis of thermal noise in electrical systems. In fact this sort of noise is sometimes
called Nyquist noise. Nyquist died on April 4, 1976 in Harlingen, Texas.

A generation after Nyquist’s pioneering work Claude Shannon, also
at Bell Labs, laid the broad foundations of modern communication
theory and signal processing. Shannon (Born: April 1916 in Gaylord,
Michigan; Died: Feb 2001 in Medford, Massachusetts) was the founder
of modern information theory. After beginning his studies in electrical
engineering, Shannon took his PhD in mathematics from MIT in 1940.
Shannon’s A Mathematical Theory of Communication published in

1948 in the Bell System Technical Journal, is one of the profoundly influential scientific
works of the 20th century. In it he introduced many ideas that became the basis for
electronic communication, such as breaking down information into sequences of 0’s
and 1’s (this is where the term bit first appeared), adding extra bits to automatically
correct for errors and measuring the information or variability of signals. Shannon’s
paper and many other influential papers on communication are compiled in the book
Key papers in the development of information theory [?].

4.5.1 Aliasing

As we have seen, if a time-dependent function contains frequencies up to fs hertz, then
discrete samples taken at an interval of 1/2fs seconds completely determine the signal.
Looked at from another point of view, for any sampling interval ∆, there is a special
frequency (called the Nyquist frequency), given by fs = 1

2∆
. The extrema (peaks and

troughs) of a sinusoid of frequency fs will lie exactly 1/2fs apart. This is equivalent to
saying that critical sampling of a sine wave is 2 samples per wavelength.

We can sample at a finer interval without introducing any error; the samples will be
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Figure 4.9: A sinusoid sampled at less than the Nyquist frequency gives rise to spurious
periodicities.

redundant, of course. However, if we sample at a coarser interval a very serious kind
of error is introduced called aliasing. Figure 4.9 shows a cosine function sampled at an
interval longer than 1/2fs; this sampling produces an apparent frequency of 1/3 the true
frequency. This means that any frequency component in the signal lying outside the
interval (−fs, fs) will be spuriously shifted into this interval. Aliasing is produced by
under-sampling the data: once that happens there is little that can be done to correct
the problem. The way to prevent aliasing is to know the true band-width of the signal
(or band-limit the signal by analog filtering) and then sample appropriately so as to give
at least 2 samples per cycle at the highest frequency present.

4.6 The Discrete Fourier Transform

Now we consider the third major use of the Fourier superposition. Suppose we have
discrete data, not a continuous function. In particular, suppose we have data fk recorded
at locations xk. To keep life simple, let us suppose that the data are recorded at N
evenly spaced locations xk = 2πk/N , k = 0, 1, . . .N − 1. Think of fk as being samples
of an unknown function, which we want to approximate. Now we write down a Fourier
approximation for the unknown function (i.e., a Fourier series with coefficients to be
determined):

p(x) =
N−1
∑

n=0

cne
inx. (4.6.1)
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Now we will compute the coefficients in such a way that p interpolates (i.e., fits exactly)
the data at each xk:

fk = p(xk) =
N−1
∑

n=0

cne
in2πk/N . (4.6.2)

In theory we could do this for any linearly independent set of basis functions by solving
a linear system of equations for the coefficients. But since sines/cosines are orthogonal,
the cn coefficients can be computed directly:

ck =
1

N

N−1
∑

n=0

fne
−in2πk/N . (4.6.3)

This is the discrete version of the Fourier transform (DFT). fn are the data and ck are
the harmonic coefficients of a trigonometric function that interpolates the data. Now, of
course, there are many ways to interpolate data, but it is a theorem that the only way
to interpolate with powers of ei2πx is Equation 4.6.3.

Optional Exercise In the handout you will see some Mathematica code for computing
and displaying discrete Fourier transforms. Implement the previous formula and compare
the results with Mathematica’s built in Fourier function. You should get the same
result, but it will take dramatically longer than Mathematica would for 100 data points.
The reason is that Mathematica uses a special algorithm called the FFT (Fast Fourier
Transform). See Strang for an extremely clear derivation of the FFT algorithm.

4.7 The Linear Algebra of the DFT

Take a close look at Equation 4.6.3. Think of the DFT coefficients ck and the data points
fn as being elements of vectors c and f . There are N coefficients and N data so both
c and f are elements of RN . The summation in the Fourier interpolation is therefore a
matrix-vector inner product. Let’s identify the coefficients of the matrix. Define a matrix
Q such that

Qnk = ein2πk/N . (4.7.1)

N is fixed, that’s just the number of data points. The matrix appearing in Equation
4.6.3 is the complex conjugate of Q; i.e., Q∗. We can write Equation 4.6.2 as

f = Q · c. (4.7.2)

The matrix Q is almost orthogonal. We have said that a matrix A is orthogonal if
AAT = ATA = I, where I is the N -dimensional identity matrix. For complex matrices
we need to generalize this definition slightly; for complex matrices we will say that A is
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orthogonal if (AT )∗A = A(AT )∗ = I.3 In our case, since Q is obviously symmetric, we
have:

Q∗Q = QQ∗ = I. (4.7.3)

Once again, orthogonality saves us from having to solve a linear system of equations:
since Q∗ = Q−1, we have

c = Q∗ · f . (4.7.4)

Now you may well ask: what happens if we use fewer Fourier coefficients than we have
data? That corresponds to having fewer unknowns (the coefficients) than data. So you
wouldn’t expect there to be an exact solution as we found with the DFT, but how about
a least squares solution? Let’s try getting an approximation function of the form

p(x) =
m

∑

n=0

cne
inx (4.7.5)

where now we sum only up to m < N − 1. Our N equations in m unknowns is now:

fk =
m

∑

n=0

cne
in2πk/N . (4.7.6)

So to minimize the mean square error we set the derivative of

||f −Q · c||2 (4.7.7)

with respect to an arbitrary coefficient, say cj, equal to zero. But this is just an ordinary
least squares problem.

4.8 The DFT from the Fourier Integral

In this section we will use the f (cycles per second) notation rather than the ω (radians
per second), because there are slightly fewer factors of 2π floating around. You should
be comfortable with both styles, but mind those 2πs! Also, up to now, we have avoided
any special notation for the Fourier transform of a function, simply observing whether
it was a function of space-time or wavenumber-frequency. Now that we are considering
discrete transforms and real data, we need to make this distinction since we will generally
have both the sampled data and its transform stored in arrays on the computer. So for
this section we will follow the convention that if h = h(t) then H = H(f) is its Fourier
transform.

3Technically such a matrix is called Hermitian or self-adjoint–the operation of taking the complex
conjugate transpose being known at the adjoint–but we needn’t bother with this distinction here.
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We suppose that our data are samples of a function and that the samples are taken at
equal intervals, so that we can write

hk ≡ h(tk), tk ≡ k∆, k = 0, 1, 2, . . . , N − 1, (4.8.1)

where N is an even number. In our case, the underlying function h(t) is unknown; all
we have are the digitally recorded time series. But in either case we can estimate the
Fourier transform H(f) at at most N discrete points chosen in the range −fs to fs where
fs is the Nyquist frequency:4

fn ≡ n

∆N
, n =

−N
2
, . . . ,

N

2
. (4.8.2)

The two extreme values of frequency f−N/2 and f−N/2 are not independent (f−N/2 =
−fN/2), so there are actually only N independent frequencies specified above.

A sensible numerical approximation for the Fourier transform integral is thus:

H(fn) =
∫

∞

−∞

h(t)e−2πifnt dt ≈
N−1
∑

k=0

hke
−2πifntk∆. (4.8.3)

Therefore

H(fn) ≈ ∆
N−1
∑

k=0

hke
−2πikn/N . (4.8.4)

Defining the Discrete Fourier Transform (DFT) by

Hn =
N−1
∑

k=0

hke
−2πikn/N (4.8.5)

we then have

H(fn) ≈ ∆Hn (4.8.6)

where fn are given by Equation (4.8.2).

Now, the numbering convention implied by Equation (4.8.2) has ± Nyquist at the extreme
ends of the range and zero frequency in the middle. However it is clear that the DFT is
periodic with period N :

H−n = HN−n. (4.8.7)

As a result, it is standard practice to let the index n in Hn vary from 0 to N − 1,
with n and k varying over the same range. In this convention 0 frequency occurs at

4The highest frequency fs in the Fourier representation of a time series sampled at a time interval
of ∆ is 1

2∆
. This maximum frequency is called the Nyquist frequency. You’ll study this in detail in the

digital course.
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n = 0; positive frequencies from from 1 ≤ n ≤ N/2 − 1; negative frequencies run from
N/2 + 1 ≤ n ≤ N − 1. Nyquist sits in the middle at n = N/2. The inverse transform is:

hk =
1

N

N−1
∑

n=0

Hne
2πikn/N (4.8.8)

Mathematica, on the other hand, uses different conventions. It uses the symmetric nor-
malization (1/

√
N in front of both the forward and inverse transform), and defines arrays

running from 1 to N in Fortran fashion. So in Mathematica, the forward and inverse
transforms are, respectively:

Hn =
1√
N

N
∑

k=1

hke
−2πi(k−1)(n−1)/N (4.8.9)

and

hk =
1√
N

N
∑

n=1

Hne
2πi(k−1)(n−1)/N . (4.8.10)

If you are using canned software, make sure you know what conventions are

being used.

4.8.1 Discrete Fourier Transform Examples

Here we show a few examples of the use of the DFT. What we will do is construct an
unknown time series’ DFT by hand and inverse transform to see what the resulting time
series looks like. In all cases the time series hk is 64 samples long. Figures 4.10 and
4.11 show the real (left) and imaginary (right) parts of six time series that resulted from
inverse DFT’ing an array Hn which was zero except at a single point (i.e., it’s a Kronecker
delta: Hi = δi,j = 1 if i = j and zero otherwise; here a different j is chosen for each
plot). Starting from the top and working down, we choose j to be the following samples:
the first, the second, Nyquist-1, Nyquist, Nyquist+1, the last. We can see that the first
sample in frequency domain is associated with the zero-frequency or DC component of a
signal and that the frequency increases until we reach Nyquist, which is in the middle of
the array. Next, in Figure 4.12, we show at the top an input time series consisting of a
pure sinusoid (left) and the real part of its DFT. Next we add some random noise to this
signal. On the left in the middle plot is the real part of the noisy signals DFT. Finally,
at the bottom, we show a Gaussian which we convolve with the noisy signal in order to
attenuate the frequency components in the signal. The real part of the inverse DFT of
this convolved signal is shown in the lower right plot.
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Figure 4.10: The real (left) and imaginary (right) parts of three length 64 time series,
each associated with a Kronecker delta frequency spectrum. These time series are recon-
structed from the spectra by inverse DFT. At the top the input spectrum is δi,0, in the
middle δi,1, and at the bottom, δi,64/2−1.

4.9 Convergence Theorems

One has to be a little careful about saying that a particular function is equal to its
Fourier series since there exist piecewise continuous functions whose Fourier series diverge
everywhere! However, here are two basic results about the convergence of such series.

Point-wise Convergence Theorem: If f is piecewise continuous and has left and right
derivatives at a point c5 then the Fourier series for f converges converges to

1

2
(f(c−) + f(c+)) (4.9.1)

where the + and - denote the limits when approached from greater than or less than c.

Another basic result is the Uniform Convergence Theorem: If f is continuous with
period 2π and f ′ is piecewise continuous, then the Fourier series for f converges uniformly
to f . For more details, consult a book on analysis such as The Elements of Real Analysis

by Bartle [1] or Real Analysis by Haaser and Sullivan [?].

5A right derivative would be: limt→0(f(c + t) − f(c))/t, t > 0. Similarly for a left derivative.
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Figure 4.11: The real (left) and imaginary (right) parts of three time series of length
64, each associated with a Kronecker delta frequency spectrum. These time series are
reconstructed from the spectra by inverse DFT. At the top the input spectrum is δi,64/2,
in the middle δi,64/2+1, and at the bottom δi,64.
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Figure 4.12: The top left plot shows an input time series consisting of a single sinusoid.
In the top right we see the real part of its DFT. Note well the wrap-around at negative
frequencies. In the middle we show the same input sinusoid contaminated with some
uniformly distributed pseudo-random noise and its DFT. At the bottom left, we show a
Gaussian time series that we will use to smooth the noisy time series by convolving it
with the DFT of the noisy signal. When we inverse DFT to get back into the “time”
domain we get the smoothed signal shown in the lower right.
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4.10 Basic Properties of Delta Functions

Another representation of the delta function is in terms of Gaussian functions:

δ(x) = lim
µ→∞

µ√
π
e−µ2x2

. (4.10.1)

You can verify for yourself that the area under any of the Gaussian curves associated
with finite µ is one.

The spectrum of a delta function is completely flat since

∫

∞

−∞

e−ikxδ(x) dx = 1. (4.10.2)

For delta functions in higher dimensions we need to add an extra 1/2π normalization for
each dimension. Thus

δ(x, y, z) =
(

1

2π

)3 ∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

ei(kxx+kyy+kzz) dkx dky dkz. (4.10.3)

The other main properties of delta functions are the following:

δ(x) = δ(−x) (4.10.4)

δ(ax) =
1

|a|δ(x) (4.10.5)

xδ(x) = 0 (4.10.6)

f(x)δ(x− a) = f(a)δ(x− a) (4.10.7)
∫

δ(x− y)δ(y − a) dy = δ(x− a) (4.10.8)
∫

∞

−∞

δ(m)f(x) dx = (−1)mf (m)(0) (4.10.9)
∫

δ′(x− y)δ(y − a) dy = δ′(x− a) (4.10.10)

xδ′(x) = −δ(x) (4.10.11)

δ(x) =
1

2π

∫

∞

−∞

eikx dk (4.10.12)

δ′(x) =
i

2π

∫

∞

−∞

keikx dk (4.10.13)

Exercises

4.1 Prove Equations 4.2.4 and 4.2.5.
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4.2 Compute the Fourier transform of the following function. f(x) is equal to 0 for
x < 0, x for 0 ≤ x ≤ 1 and 0 for x > 1.

4.3 Prove Equations 4.4.18, 4.4.19, 4.4.20, 4.4.22.

4.4 Compute the Fourier transform of f(x) = e−x2/a2

. If a is small, this bell-shaped
curve is sharply peaked about the origin. If a is large, it is broad. What can you
say about the Fourier transform of f in these two cases?

4.5 Let f(x) be the function which is equal to -1 for x < 0 and +1 for x > 0. Assuming
that

f(x) =
a0

2
+

∞
∑

k=1

ak cos(kπx/l) +
∞
∑

k=1

bk sin(kπx/l),

compute a0, a1, a2, b1 and b2 by hand, taking the interval of periodicity to be
[−1, 1].

4.6 For an odd function, only the sine or cosine terms appear in the Fourier series.
Which is it?

4.7 Consider the complex exponential form of the Fourier series of a real function

f(x) =
∞
∑

n=−∞

cne
inπx/l.

Take the complex conjugate of both sides. Then use the fact that since f is real, it
equals its complex conjugate. What does this tell you about the coefficients cn?

.


