1. Use Mathematica functions to perform a set of Fourier transform pairs. For the first three, chose $t_{0}=1$ and plot the functions in both t and ω domains.
a. $\operatorname{I}\left\{\operatorname{rect}\left[t / t_{0}\right]\right\} \quad$ UnitBox[]
b. $\mathfrak{I}\left\{\exp \left[-t^{2} / t_{0}^{2}\right]\right\}$
c. $\mathfrak{I}\left\{\Lambda\left[t / t_{0}\right]\right\} \quad$ UnitTriangle[] For this triangle function, also calculate the result by doing the integral directly manually.
d. $F[\omega]=\mathfrak{I}\left\{\cos \left[\omega_{0} t\right]^{2}\right\}$ The DiracDelta[] functions will not plot. Instead, use the function Convolve[] to convolve the result $\mathrm{F}[\omega$] with a narrow Gaussian pulse: $\exp \left[-\omega^{2} / d \omega^{2}\right] \otimes F[\omega]$ In Mathematica, this is $\rightarrow G\left[\omega_{-}, d \omega_{-}\right]=$Convolve $\left[\exp \left[-\omega p^{2} / d \omega^{2}\right], F[\omega p], \omega p, \omega\right]$, where ω p is a dummy variable. Make a plot of the t and ω space results this way, choosing the Gaussian width $\mathrm{d} \omega$ for narrow spikes.
2. Symmetry properties of Fourier transforms
a. Show that if $f(t)$ is odd and real, $F(\omega)$ is imaginary and odd.
b. Show that if $f(t)$ is real, $F(\omega)$ is in general complex, but is constrained by the symmetry property $F(-\omega)=F^{*}(\omega)$
c. Show that when is $f(t)$ is real, $|F(\omega)|^{2}$ is an even function of ω.
3. Consider a pulse of the form
$f(t)=A e^{-|t| \mid b} e^{-i \omega_{0} t}$
where b is a real, positive constant.
a. Calculate the Fourier transform $F(\omega)=\mathfrak{I}\{f(t)\}$ by direct integration, manually.
b. Do this transform using the FourierTransform[] function in Mathematica. Our convention for the transforms requires you use the option FourierParameters $\rightarrow\{1,1\}$.
c. Now consider the one-sided exponential decay function, letting $l(t)=e^{-t}$ for $t>0$, and $=0$ for $t<0$. Calculate the Fourier transform $L(\omega)$ of the decaying exponential function, l. Express $f(t)$ in terms of $l(t)$, and use Fourier identities to calculate $F(\omega)$ (no additional integration needed).
d. Show that for this pulse $\int_{-\infty}^{\infty}|f(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega$ by calculating both sides of the equation, confirming Parseval's theorem. You may use Mathematica for this.
4. Given that the Fourier transform of $f(t)$ is $F(\omega)$, find general expressions for the Fourier transforms of $g(t)=\int_{0}^{t} f\left(t^{\prime}\right) d t^{\prime}$ and $h(t)=d f / d t$ in terms of $F(\omega)$. Hint: replace $f(t)$ with its transform inside the expressions above.
