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Correlation vs convolution

Correlation: =
8 (7)= [ £ (1) f; (¢ =)
Convolution: -

2(0)= 1,8 ;= [ () s (x-1)a

Autocorrelation and autoconvolution are operations on the
same pulse.

Michelson interferometer:
— Time ordering of the pulse cannot change
— Detector measures time-integrated intensity
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Graphical approach to convolution
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Figure 6-1 Functions used to illustrate convolution by graphical methods.
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Figure 6-3 Resulting convolution of functions shown in Fig. 6-1.
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Figure 6-2 Graphical method for convolving functions of Fig. 6-1.
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Figure 6-7 Repeated convolution of four rectangle functions.
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Figure 6-5 Smoothing effects of convolution. Figure 6-8 Repeated convolution of the function exp { — x}step(x).



Convolution theorem

FT{F(0)G(0)}=FT" {J F(e)e™ 4[7 gl)e™ d}}
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Autocorrelation theorem
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Measuring pulse duration: field autocorrelation?

* The output of a linear Michelson interferometer is
connected to the autocorrelation of the field
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:‘El(t)+E2(t—T)‘2dt

J(1E (0 +]E, (=0 +2Re(E, (1) 3 (1~ 7))

€, <€ T e+ 2Re(gAC (’L’))
— If beamsplitter is 50/50, then el=e2

 What can we learn by measuring the autocorrelation
of the field?
— We get the power spectrum
— phase info is gone, so no pulse duration measurement
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SHG FROG is also a spectrogram, but its interpretation is more complex.



SHG FROG traces are symmetrical with respect to delay.
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SHG FROG traces for complex pulses
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Original trace Reconstructed trace

Fat Richman,
et al.,
Opt. Lett.,
22, 721
(1997).
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The FROG Marginals

The delay marginal is the integral
of the FROG trace over all frequencies.
It is a function of delay only.

I

Frequency

M (7) = JIFROG (w,7)dw

The SHG FROG marginals

The frequency marginal is the integral can be related to easily
of the FROG trace over all delays: measured quantities:
It is a function of frequency only.

M_(t) = The Autocorrelation

M, (w) = JIFROG (w,7)dT
The Autoconvolution

M, (@) = of the Spectrum

The marginals are essential in
checking for systematic error. Delong, et al., JQE, 32, 1253 (1996).



Intensity dependent refractive index

« x©3 effects lead to four-wave mixing

Third-harmonic Sum-difference Degenerate
generation mixing 4-wave mixing

T T T
|
[ 1l it

e DFWM seems like nothing is produced, but:
— NL refractive index leads to NL phase changes

— NL ellipse rotation, polarization changes
— Cross-polarized wave generation

— Many effects: self-phase mod, self-focusing, solitons,
phase conjugation, transient gratings, ...



Nonlinear Refractive Index

The refractive index in the presence of linear and nonlinear polarization:

2
n= 14 10 +320| A
Now, the usual refractive index (which we'll call ng) is: 1, =+/1+ 7

2 I
2n0800
Assume that the nonlinear term << n,:
3 (3) 3 (3) 3 (3)
So: n=n, 1+ )g I =n, 1+ )g [ |=n,+ )g Vi
2nogoc 4noeoc 4n080(:

Usually, we define a “nonlinear refractive index :
3%(3)

o 2
4n0 E,C

nxn0+n2] n,

See Boyd 4.1 for other definitions.



Mechanisms and time scales for NL index

Table 1. Representative Materials with Values of n, and «,°

X 107 (em?/W) o (cm/GW)
E,
Material (e\f’_) 1064 nm 532 nm 355 nm 266 nm 532 nm 355 nm 266 nm
LiF 11.6 0.081 0.061 0.061 0.13 ~0 ~0 ~0
MgF, 113 0.057 0.057 0.066 0.15 ~0 ~0 ~0
BaF, 92 0.14 0.21 0.27 031 ~0 ~0 0.06
NaCl [6] ~8.7 1.8
Sio, ~7.8 0.21 0.22 0.24 0.78 ~0 -0 0.05
MgO [6] 7.77 0.39
Al,O, 73 0.31 0.33 0.37 0.60 ~0 ~0 0.09
BBO 62 0.29 0.55 036 0.003 ~0 0.01 09
KBr 6.0 0.79 1.27 ~0
CaCO, 59 0.29 0.29 0.37 12 0.018 08
LiINDbO, 39 091 83 0.38
KTP 38 24 23 0.1
7nS [9] 3.66 6.3 34
Te Glass ~3.6 1.7 9.0 0.62
ZnSe 9] 2.67 29 —68 58
ZnTe [10] 226 120 42
CdTe [10] 144 300 22
GaAs|[10] 142 -330 26
RNglass [11] ~14 22

“Ordered according to bandgap energy, E,, or cutoff wavelength, taken from [8] except
where noted. The values quoted were obtained by using multiple pulse widths in order to
isolate the Kerr response. See the references for details. Blank cells indicate no measure-
ment at this wavelength.

Advances in Optics and Photonics 2, 60-200 (2010) doi:10.1364/A0P.2.000060
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Mechanisms for NL index

1) Electronic polarization : Electronic charge redistribution

2) Molecular orientation : Molecular alignment due to the induced dipole
3) Electrostriction : Density change by optical field

4) Saturated absorption : Intensity-dependent absorption

5) Thermal effect : Temperature change due to the optical field

6) Photorefractive effect : Induced redistribution of electrons and holes =

Refractive index change due to the local field inside the medium



TaBLE 4.1.1 Typical values of the nonlinear refractive index*

ny X Response time

Mechanism (cm?/W) (esu) (sec)

Electronic polarization 10-15 jg-i% 10-1
Molecular orientation 1o~ 1012 10712
Electrostriction | 1014 1012 109
Saturated atomic absorption 10~10 1078 10-8
Thermal effects 106 {1 1073
Photorefractive effect (large) (large) (intensity-dependent)

@ For linearly polarized light.

b The photorefractive effect often leads to a very strong nonlinear response. This response usually cannot be
described in terms of a x® (or an n,) nonlinear susceptibility, because the nonlinear polarization does not depend
on the applied field strength in the same manner as the other mechanisms listed.




