Chapter: 7

August 4, 2009

Symmetric Matrices and Quadratic Forms

Section 7.4: The Singular Value Decomposition

pgs. 471 - 482

	<u>Lecture</u> : The Singular Value Decomposition
Topics:	Singular Values Singular Value Decomposition
Problems	Prac: 1 Prob: 3, 7, 11, 13, 15, 17, 19, 21

Section Goals

• Understand the symmetry of **A**^T**A** can be used to define a decomposition availble to all matrices regardless of its spectrum or dimension.

Section Objectives

- Define the singular values of a matrix and show that their definition gives rise to a set of vectors, which forms an orthogonal basis for the column-space of a matrix.
- State and prove theorem 7.4.10 on page 474, which states that any matrix can be decomposed into UΣV^T, which is known as the singular value decomposition (SVD) of the matrix A.
- Show and example of SVD applied to a matrix that does not have full row-rank.