MATH-332: Linear Algebra

Symmetric Matrices and Quadratic Forms

Section 7.4: The Singular Value Decomposition

Lecture: The Singular Value Decomposition

Topics:

Singular Values
Singular Value Decomposition

Problems
Prac: 1
Prob: 3, 7, 11, 13, 15, 17, 19, 21

Section Goals

- Understand the symmetry of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ can be used to define a decomposition avalible to all matrices regardless of its spectrum or dimension.

Section Objectives

- Define the singular values of a matrix and show that their definition gives rise to a set of vectors, which forms an orthogonal basis for the column-space of a matrix.
- State and prove theorem 7.4 .10 on page 474 , which states that any matrix can be decomposed into $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$, which is known as the singular value decomposition (SVD) of the matrix \mathbf{A}.
- Show and example of SVD applied to a matrix that does not have full row-rank.

