Matrix Equations - Matrix Inversion - Invertible Matrix Theorem - Matrix Partitioning - Matrix Factorization

1. Given,

$$
\mathbf{A}(\theta)=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \tag{1}\\
\sin (\theta) & \cos (\theta)
\end{array}\right], \quad \theta \in(0,2 \pi]
$$

We now consider the action of \mathbf{A} on vectors from \mathbb{R}^{2}. That is, we wish to study the effect of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ represented by the matrix $\mathbf{A}(\theta)$ where $\theta \in(0,2 \pi]$.
(a) First show that the transformation is one-to-one. ${ }^{1}$
(b) Given this matrix representation of T find the matrix representation of the inverse transformation. That is find \mathbf{A}^{-1}.
(c) Let $\mathbf{x}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}$. Describe or draw the action of the linear transformation $\mathbf{A} \mathbf{x}$ for $\theta \in S$ where $S=\left\{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$. What would the action of \mathbf{A}^{-1} be?
(d) Let $\mathbf{A}(\theta) \mathbf{x}=\mathbf{b}$ for each $\theta \in S$. Calculate, $\frac{\mathbf{x} \cdot \mathbf{b}}{|\mathbf{x}||\mathbf{b}|} .{ }^{2}$ How is this related to θ ? ${ }^{3}$
(e) If we define the derivative of a matrix function as a matrix of derivatives then a typical product rule results. That is, if \mathbf{A}, \mathbf{B} have elements, which are functions of θ then $\frac{d[\mathbf{A B}]}{d \theta}=\mathbf{A} \frac{d \mathbf{B}}{d \theta}+\frac{d \mathbf{A}}{d \theta} \mathbf{B} \cdot{ }^{4}$ Using this and the identity $\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$ to prove that $\frac{d\left[\mathbf{A}^{-1}\right]}{d \theta}=-\mathbf{A}^{-1} \frac{d[\mathbf{A}]}{d \theta} \mathbf{A}^{-1}$. Verify this formula using the matrix given above.
2. Given,

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 6 & 7 \\
0 & 2 & 1 \\
2 & 3 & 4
\end{array}\right]
$$

(a) Calculate \mathbf{A}^{-1} and check your result with the appropriate matrix multiplication.
(b) Let $\mathbf{A}_{\text {left }}^{-1}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}}$. Prove that $\mathbf{A}_{\text {left }}^{-1}$ exists and show that $\mathbf{A}_{\text {left }}^{-1} \mathbf{A}=\mathbf{I}$. ${ }^{5}$
(c) Let $\mathbf{A}_{\text {right }}^{-1}=\mathbf{A}^{\mathrm{T}}\left(\mathbf{A} \mathbf{A}^{\mathrm{T}}\right)^{-1}$. Prove that $\mathbf{A}_{\text {right }}^{-1}$ exists and show that $\mathbf{A} \mathbf{A}_{\text {right }}^{-1}=\mathbf{I}{ }^{6}$
(d) Let $\mathbf{A}_{1}=\left[\begin{array}{ll}2 & 2\end{array}\right]^{\mathrm{T}}$ and $\mathbf{A}_{2}=\left[\begin{array}{ll}2 & 2\end{array}\right]$. Using the previous formula find the left-inverse of \mathbf{A}_{1} and the right-inverse of \mathbf{A}_{2}. Check your results with the appropriate multiplication.

[^0]3. Noting any theorems used from class or the text, prove the following statements:
(a) If \mathbf{A} is an $n \times n$ matrix and \mathbf{A}^{-1} exists, then the columns of \mathbf{A} span \mathbb{R}^{n}.
(b) If \mathbf{A} is an $n \times n$ matrix and $\mathbf{A x}=\mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^{n}$, then \mathbf{A} is invertible.
(c) If the matrix \mathbf{A} is invertible, then the columns of \mathbf{A}^{-1} are linearly independent.
(d) If the equation $\mathbf{A x}=\mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$, has more than one solution for some $\mathbf{b} \in \mathbb{R}^{n}$, then the columns of \mathbf{A} do not span \mathbb{R}^{n}.
(e) If the equation $\mathbf{A x}=\mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$, is inconsistent for some $\mathbf{b} \in \mathbb{R}^{n}$, then the equation $\mathbf{A x}=\mathbf{0}$ has a non-trivial solution.
(f) If \mathbf{A} is a square matrix with two identical columns then \mathbf{A}^{-1} does not exist.
4. Suppose that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is written in partitioned form as,
\[

\mathbf{A}=\left[$$
\begin{array}{ll}
\mathbf{P} & \mathbf{Q} \tag{2}\\
\mathbf{R} & \mathbf{S}
\end{array}
$$\right]
\]

(a) Suppose that \mathbf{A} and \mathbf{P} are non-singular and prove that,

$$
\mathbf{A}^{-1}=\left[\begin{array}{cc}
\mathbf{X} & -\mathbf{P}^{-1} \mathbf{Q W} \tag{3}\\
-\mathbf{W R P} &
\end{array}\right]
$$

where $\mathbf{W}=\left(\mathbf{S}-\mathbf{R} \mathbf{P}^{-1} \mathbf{Q}\right)^{-1}$ and $\mathbf{X}=\mathbf{P}^{-1}+\mathbf{P}^{-1} \mathbf{Q} \mathbf{W} \mathbf{R} \mathbf{P}^{-1}$.
(b) Suppose that \mathbf{A} and \mathbf{S} are non-singular and prove that,

$$
\mathbf{A}^{-1}=\left[\begin{array}{cc}
\mathbf{X} & -\mathbf{X Q S}^{-1} \tag{4}\\
-\mathbf{S}^{-1} \mathbf{R X} & \mathbf{W}
\end{array}\right]
$$

where $\mathbf{X}=\left(\mathbf{P}-\mathbf{Q S}^{-1} \mathbf{R}\right)^{-1}$ and $\mathbf{W}=\mathbf{S}^{-1}+\mathbf{S}^{-1} \mathbf{R X Q S}{ }^{-1}$.
(c) Show that if $\mathbf{P}, \mathbf{S}, \mathbf{A}$ are all non-singular matrices then the two previous forms are equivalent and that $\left(\mathbf{S}-\mathbf{R} \mathbf{P}^{-1} \mathbf{Q}\right)^{-1}=$ $\mathbf{S}^{-1}+\mathbf{S}^{-1} \mathbf{R X Q S}^{-1}$.
(d) Finally, test these previous formula for $\mathbf{P}=a, \mathbf{Q}=b, \mathbf{R}=c, \mathbf{S}=d$ where $a, b, c, d \in \mathbb{R}$ such that $a d-b c \neq 0$.
5. Determine the LU-Decomposition of the matrix \mathbf{A} and check your result for \mathbf{L} by multiplication of three elementary matrices.

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 4 & -1 & 5 \\
3 & 7 & -2 & 9 \\
-2 & -3 & 1 & -4
\end{array}\right]
$$

Hint: The matrix \mathbf{U}, found by three steps of row reduction on \mathbf{A}, will have two pivot columns. These two pivot columns are used to determine the first two columns of $\mathbf{L}_{3 \times 3}$. The remaining column of \mathbf{L} is equal the last column of \mathbf{I}_{3}.

[^0]: ${ }^{1}$ Recall that a transformation is one-to-one if and only if $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.
 ${ }^{2}$ Recall that $\mathbf{x} \cdot \mathbf{y}$ and $|\mathbf{x}|$ are the standard dot-product and magnitude, respectively, from vector-calculus. These operations hold for vectors in \mathbb{R}^{n} but now have the following definitions, $\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{\mathrm{T}} \mathbf{y}$ and $\mid \mathbf{x}=\sqrt{\mathbf{x}^{\mathrm{T}} \mathbf{x}}$.
 ${ }^{3}$ What we are trying to extract here is the standard result from calculus, which relates the dot-product or inner-product on vectors to the angle between them. This is clear when we have vectors in \mathbb{R}^{2} or \mathbb{R}^{3} since we have tools from trigonometry and geometry but when treating vectors in $\mathbb{R}^{n}, n \geq 4$ these tools are no longer available. However, we would still like to have similar results to those of $\mathbb{R}^{n}, n=2,3$. To make a long story short, we will have these results for arbitrary vectors in \mathbb{R}^{n} but not immediately. The first thing we must do is show that $|\mathbf{x} \cdot \mathbf{y}| \leq|\mathbf{x}||\mathbf{y}|$, which is known as Schwarz's inequality. Without this we cannot be permitted to always relate $\frac{\mathbf{x} \cdot \mathbf{b}}{|\mathbf{x}||\mathbf{b}|}$ to θ via inverse trigonometric functions. These details will occur in chapter 6 where we find that by using the inner-product on vectors from \mathbb{R}^{n} we will define the notion of angle and from that distance. Using these definitions and Schwarz's inequality will then give us a triangle-inequality for arbitrary finite-dimensional vectors. This is to say that the algebra of vectors in \mathbb{R}^{n} carries its own definition of angle and length - very nice of it don't you think? Also, it should be noted that these results exist for certain so-called infinite-dimensional spaces, but are harder to prove - of course, and that the study of linear transformations of such spaces is the general setting for quantum mechanics - see MATH503:Functional Analysis for more details.
 ${ }^{4}$ To see why this is true differentiate an arbitrary element of $\mathbf{A B}$ to find $\frac{d}{d \theta}[\mathbf{A B}]_{i j}=\frac{d}{d \theta} \sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{k=1}^{n} \frac{d a_{i k}}{d \theta} b_{k j}+a_{i k} \frac{d b_{k j}}{d \theta}$.
 ${ }^{5}$ This matrix is called the left-inverse of \mathbf{A} and it can be shown that if $\mathbf{A} \in \mathbb{R}^{m \times n}$ such that \mathbf{A} has a pivot in every column then the left inverse exists.
 ${ }^{6}$ This matrix is called the right-inverse of \mathbf{A} and it can be shown that if $\mathbf{A} \in \mathbb{R}^{m \times n}$ such that \mathbf{A} has a pivot in every row then the right inverse exists.

