Matrix Equations - Matrix Inversion - Invertible Matrix Theorem - Matrix Partitioning - Matrix Factorization

1. Given,

$$\mathbf{A}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad \theta \in (0, 2\pi].$$
(1)

We now consider the *action* of **A** on vectors from \mathbb{R}^2 . That is, we wish to study the effect of the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ represented by the matrix $\mathbf{A}(\theta)$ where $\theta \in (0, 2\pi]$.

- (a) First show that the transformation is one-to-one. 1
- (b) Given this matrix representation of T find the matrix representation of the inverse transformation. That is find \mathbf{A}^{-1} .
- (c) Let $\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathrm{T}}$. Describe or draw the action of the linear transformation $\mathbf{A}\mathbf{x}$ for $\theta \in S$ where $S = \left\{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$. What would the action of \mathbf{A}^{-1} be?

(d) Let $\mathbf{A}(\theta)\mathbf{x} = \mathbf{b}$ for each $\theta \in S$. Calculate, $\frac{\mathbf{x} \cdot \mathbf{b}}{|\mathbf{x}||\mathbf{b}|}^2$. How is this related to θ ?³

(e) If we define the derivative of a matrix function as a matrix of derivatives then a typical product rule results. That is, if **A**, **B** have elements, which are functions of θ then $\frac{d[\mathbf{AB}]}{d\theta} = \mathbf{A}\frac{d\mathbf{B}}{d\theta} + \frac{d\mathbf{A}}{d\theta}\mathbf{B}$. ⁴ Using this and the identity $\mathbf{AA}^{-1} = \mathbf{I}$ to prove that $\frac{d[\mathbf{A}^{-1}]}{d\theta} = -\mathbf{A}^{-1}\frac{d[\mathbf{A}]}{d\theta}\mathbf{A}^{-1}$. Verify this formula using the matrix given above.

2. Given,

$$\mathbf{A} = \left[\begin{array}{rrrr} 3 & 6 & 7 \\ 0 & 2 & 1 \\ 2 & 3 & 4 \end{array} \right].$$

- (a) Calculate \mathbf{A}^{-1} and check your result with the appropriate matrix multiplication.
- (b) Let $\mathbf{A}_{\text{left}}^{-1} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}$. Prove that $\mathbf{A}_{\text{left}}^{-1}$ exists and show that $\mathbf{A}_{\text{left}}^{-1}\mathbf{A} = \mathbf{I}$. ⁵
- (c) Let $\mathbf{A}_{\text{right}}^{-1} = \mathbf{A}^{\mathrm{T}}(\mathbf{A}\mathbf{A}^{\mathrm{T}})^{-1}$. Prove that $\mathbf{A}_{\text{right}}^{-1}$ exists and show that $\mathbf{A}\mathbf{A}_{\text{right}}^{-1} = \mathbf{I}.^{6}$
- (d) Let $\mathbf{A}_1 = \begin{bmatrix} 2 & 2 \end{bmatrix}^T$ and $\mathbf{A}_2 = \begin{bmatrix} 2 & 2 \end{bmatrix}$. Using the previous formula find the left-inverse of \mathbf{A}_1 and the right-inverse of \mathbf{A}_2 . Check your results with the appropriate multiplication.

⁴To see why this is true differentiate an arbitrary element of **AB** to find $\frac{d}{d\theta} [\mathbf{AB}]_{ij} = \frac{d}{d\theta} \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{n} \frac{da_{ik}}{d\theta} b_{kj} + a_{ik} \frac{db_{kj}}{d\theta}$.

¹Recall that a transformation is one-to-one if and only if $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

²Recall that $\mathbf{x} \cdot \mathbf{y}$ and $|\mathbf{x}|$ are the standard dot-product and magnitude, respectively, from vector-calculus. These operations hold for vectors in \mathbb{R}^n but now have the following definitions, $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}$ and $|\mathbf{x} = \sqrt{\mathbf{x}^T \mathbf{x}}$.

³What we are trying to extract here is the standard result from calculus, which relates the dot-product or inner-product on vectors to the angle between them. This is clear when we have vectors in \mathbb{R}^2 or \mathbb{R}^3 since we have tools from trigonometry and geometry but when treating vectors in \mathbb{R}^n , $n \ge 4$ these tools are no longer available. However, we would still like to have similar results to those of \mathbb{R}^n , n = 2, 3. To make a long story short, we will have these results for arbitrary vectors in \mathbb{R}^n but not immediately. The first thing we must do is show that $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}||\mathbf{y}|$, which is known as Schwarz's inequality. Without this we cannot be permitted to always relate $\frac{\mathbf{x} \cdot \mathbf{b}}{|\mathbf{x}||\mathbf{b}|}$ to θ via inverse trigonometric functions. These details will occur in chapter 6 where we find that by using the inner-product on vectors from \mathbb{R}^n we will define the notion of angle and from that distance. Using these definitions and Schwarz's inequality will then give us a triangle-inequality for arbitrary finite-dimensional vectors. This is to say that the algebra of vectors in \mathbb{R}^n carries its own definition of angle and length - very nice of it don't you think? Also, it should be noted that these results exist for certain so-called infinite-dimensional spaces, but are harder to prove - of course, and that the study of linear transformations of such spaces is the general setting for quantum mechanics - see MATH503:Functional Analysis for more details.

⁵This matrix is called the left-inverse of **A** and it can be shown that if $\mathbf{A} \in \mathbb{R}^{m \times n}$ such that **A** has a pivot in every column then the left inverse exists.

⁶This matrix is called the right-inverse of **A** and it can be shown that if $\mathbf{A} \in \mathbb{R}^{m \times n}$ such that **A** has a pivot in every row then the right inverse exists.

- 3. Noting any theorems used from class or the text, prove the following statements:
 - (a) If **A** is an $n \times n$ matrix and \mathbf{A}^{-1} exists, then the columns of **A** span \mathbb{R}^n .
 - (b) If **A** is an $n \times n$ matrix and $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^n$, then **A** is invertible.
 - (c) If the matrix \mathbf{A} is invertible, then the columns of \mathbf{A}^{-1} are linearly independent.
 - (d) If the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$, has more than one solution for some $\mathbf{b} \in \mathbb{R}^n$, then the columns of \mathbf{A} do not span \mathbb{R}^n .
 - (e) If the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$, is inconsistent for some $\mathbf{b} \in \mathbb{R}^n$, then the equation $\mathbf{A}\mathbf{x} = \mathbf{0}$ has a non-trivial solution.
 - (f) If \mathbf{A} is a square matrix with two identical columns then \mathbf{A}^{-1} does not exist.
- 4. Suppose that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is written in partitioned form as,

$$\mathbf{A} = \begin{bmatrix} \mathbf{P} & \mathbf{Q} \\ \mathbf{R} & \mathbf{S} \end{bmatrix}.$$
 (2)

(a) Suppose that **A** and **P** are non-singular and prove that,

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{X} & -\mathbf{P}^{-1}\mathbf{Q}\mathbf{W} \\ -\mathbf{W}\mathbf{R}\mathbf{P}^{-1} & \mathbf{W} \end{bmatrix},\tag{3}$$

where $\mathbf{W} = (\mathbf{S} - \mathbf{R}\mathbf{P}^{-1}\mathbf{Q})^{-1}$ and $\mathbf{X} = \mathbf{P}^{-1} + \mathbf{P}^{-1}\mathbf{Q}\mathbf{W}\mathbf{R}\mathbf{P}^{-1}$.

(b) Suppose that \mathbf{A} and \mathbf{S} are non-singular and prove that,

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{X} & -\mathbf{X}\mathbf{Q}\mathbf{S}^{-1} \\ -\mathbf{S}^{-1}\mathbf{R}\mathbf{X} & \mathbf{W} \end{bmatrix},\tag{4}$$

where $\mathbf{X} = (\mathbf{P} - \mathbf{Q}\mathbf{S}^{-1}\mathbf{R})^{-1}$ and $\mathbf{W} = \mathbf{S}^{-1} + \mathbf{S}^{-1}\mathbf{R}\mathbf{X}\mathbf{Q}\mathbf{S}^{-1}$.

- (c) Show that if $\mathbf{P}, \mathbf{S}, \mathbf{A}$ are all non-singular matrices then the two previous forms are equivalent and that $(\mathbf{S} \mathbf{R}\mathbf{P}^{-1}\mathbf{Q})^{-1} = \mathbf{S}^{-1} + \mathbf{S}^{-1}\mathbf{R}\mathbf{X}\mathbf{Q}\mathbf{S}^{-1}$.
- (d) Finally, test these previous formula for $\mathbf{P} = a$, $\mathbf{Q} = b$, $\mathbf{R} = c$, $\mathbf{S} = d$ where $a, b, c, d \in \mathbb{R}$ such that $ad bc \neq 0$.
- 5. Determine the LU-Decomposition of the matrix **A** and check your result for **L** by multiplication of three elementary matrices.

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & -1 & 5 \\ 3 & 7 & -2 & 9 \\ -2 & -3 & 1 & -4 \end{bmatrix}$$

Hint: The matrix **U**, found by three steps of row reduction on **A**, will have two pivot columns. These two pivot columns are used to determine the first two columns of $\mathbf{L}_{3\times 3}$. The remaining column of **L** is equal the last column of \mathbf{I}_3 .