
� Maxwell-Boltzmann distribution function

The M-B distribution function can be written in terms of energy as 
f(E) = A exp(- E/kT)
For a free gas (particle energy is only kinetic), the distribution function can be written in terms of velocity: 
f HvL = A expI-
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Here, n(r) is the number density, which can in general vary with position. The constant A is determined by normalization. We will
treat this as a probability distribution function normalized so that  
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We make use of the common integral of a Gaussian: 
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we'll work with a situation where the particle density is constant, n(r) = n0, so the normalized distribution function is 
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The interpretation of this function is that f Ivx, vy, vzM dvx dvy dvz is the probability of finding a particle with a velocity in a narrow

range of velocities centered on v. If we want to know the probablility of finding a particle with a z-component of velocity vz (with

whatever x and y components), we integrate over vx and vy: 
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