MATH 348-Advanced Engineering Mathematics
 Exam I - Review

February 12, 2008
Exam I: February 22, 2008
Exam I will be held Friday the $22^{\text {nd }}$ in class. There will be no notecards or calculators. Exam I will test on Chapter 11 from the text. To prepare for the exam you should refer to the recommended problems on the syllabus and the homework assignments. The following is a list of concepts and methods which you should be familiar with. Also listed are the key equations from Chapter 11. It is assumed that the student has equations (1)-(4) and (9) memorized for the exam.

11.1-2 Fourier Series of Periodic Functions (Formulas (1)-(2))

From this section the student should understand:

- The concept of an orthogonal trigonometric system.
- The concept of representing periodic functions using trigonometric series.

From this section the student should be able to:

- Determine Fourier coefficients of a 2L-periodic function.
- Using the Fourier coefficients, write down the Fourier series representation of a 2L-periodic function.
11.3 Even and Odd Functions. Half-Range Expansions

From this section the student should understand:

- The algebraic and geometric properties of even and odd functions.
- The definite integral simplifications associated with even and odd functions.
- The Fourier series representations of functions with symmetry.

From this section the student should be able to:

- Simplify integrals based on symmetry of the integrand.
- Simplify Fourier series based on symmetry of the periodic function.
- Periodically extend functions whose domain is finite to get Half-Range series expansions.

11.4 Complex Fourier Series (Formulas (3)-(4))

From this section the student should understand:

- The connection between exponential functions and sine/cosine functions.
- The equivalence of the real Fourier series and the complex Fourier series.

From this section the student should be able to:

- Determine the complex Fourier coefficients of a 2L-periodic function.
- Using the complex Fourier coefficients, write down the complex Fourier series representation of a 2L-periodic function.
- Determine the equivalent real Fourier series representation of a function given the complex Fourier series.
11.7 Fourier Integral (Formulas (5)-(6))

From this section the student should understand:

- The connection between periodic functions and non-periodic functions.
- The relationship between the Fourier Series and the Fourier Integral.
- Simplifications of the Fourier Integral associated with non-periodic symmetric functions.

From this section the student should be able to:

- Determine the Fourier Integral representation of a non-periodic function.
11.8 Fourier Sine and Cosine Transforms (Formulas (7)-(8))

From this section the student should understand:

- The connection between the Fourier Integral representation of symmetric functions and the Fourier Sine/Cosine Transforms (both forward and inverse transforms).
- The connection between sine and cosine transforms and odd and even functions.

From this section the student should be able to:

- Given a function, find the sine/cosine transform.
11.9 The Fourier Transform (Formula (9))

From this section the student should understand:

- The connection between the Fourier Integral and the Fourier Transform.
- The concept of transform pairs.

From this section the student should be able to:

- Determine the Fourier Transform of a non-symmetric function.
- Determine the Fourier Transform of a function using transform pairs.

Important formulas: The following equations will be needed for the examination.

$$
\begin{align*}
& f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right) \tag{1}\\
& a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \quad a_{n}= \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x . \tag{2}\\
& f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{\frac{i n \pi}{L} x} \tag{3}\\
& c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-\frac{i n \pi}{L} x} d x \tag{4}\\
& f(x)=\int_{0}^{\infty}[A(\omega) \cos (\omega x)+B(\omega) \sin (\omega x)] d \omega \tag{5}\\
& A(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos (\omega x) d x, B(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin (\omega x) d x \tag{6}\\
& \hat{f}_{c}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos (\omega x) d x, f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{c}(\omega) \cos (\omega x) d \omega \tag{7}\\
& \hat{f_{s}}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (\omega x) d x, f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{s}(\omega) \sin (\omega x) d \omega \tag{8}\\
& \hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x} d \omega \tag{9}
\end{align*}
$$

