
MATH 348 - Advanced Engineering Mathematics February 12, 2008
Exam I - Review Exam I: February 22, 2008

Exam I will be held Friday the 22nd in class. There will be no notecards or calculators. Exam I will test on Chapter
11 from the text. To prepare for the exam you should refer to the recommended problems on the syllabus and the
homework assignments. The following is a list of concepts and methods which you should be familiar with. Also listed
are the key equations from Chapter 11. It is assumed that the student has equations (1)-(4) and (9) memorized for
the exam.

11.1-2 Fourier Series of Periodic Functions (Formulas (1)-(2))

From this section the student should understand:

• The concept of an orthogonal trigonometric system.

• The concept of representing periodic functions using trigonometric series.

From this section the student should be able to:

• Determine Fourier coefficients of a 2L-periodic function.

• Using the Fourier coefficients, write down the Fourier series representation of a 2L-periodic function.

11.3 Even and Odd Functions. Half-Range Expansions

From this section the student should understand:

• The algebraic and geometric properties of even and odd functions.

• The definite integral simplifications associated with even and odd functions.

• The Fourier series representations of functions with symmetry.

From this section the student should be able to:

• Simplify integrals based on symmetry of the integrand.

• Simplify Fourier series based on symmetry of the periodic function.

• Periodically extend functions whose domain is finite to get Half-Range series expansions.

11.4 Complex Fourier Series (Formulas (3)-(4))

From this section the student should understand:

• The connection between exponential functions and sine/cosine functions.

• The equivalence of the real Fourier series and the complex Fourier series.

From this section the student should be able to:

• Determine the complex Fourier coefficients of a 2L-periodic function.

• Using the complex Fourier coefficients, write down the complex Fourier series representation of a 2L-periodic
function.

• Determine the equivalent real Fourier series representation of a function given the complex Fourier series.

11.7 Fourier Integral (Formulas (5)-(6))

From this section the student should understand:

• The connection between periodic functions and non-periodic functions.

• The relationship between the Fourier Series and the Fourier Integral.
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• Simplifications of the Fourier Integral associated with non-periodic symmetric functions.

From this section the student should be able to:

• Determine the Fourier Integral representation of a non-periodic function.

11.8 Fourier Sine and Cosine Transforms (Formulas (7)-(8))

From this section the student should understand:

• The connection between the Fourier Integral representation of symmetric functions and the Fourier Sine/Cosine
Transforms (both forward and inverse transforms).

• The connection between sine and cosine transforms and odd and even functions.

From this section the student should be able to:

• Given a function, find the sine/cosine transform.

11.9 The Fourier Transform (Formula (9))

From this section the student should understand:

• The connection between the Fourier Integral and the Fourier Transform.

• The concept of transform pairs.

From this section the student should be able to:

• Determine the Fourier Transform of a non-symmetric function.

• Determine the Fourier Transform of a function using transform pairs.

Important formulas: The following equations will be needed for the examination.
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