Tilted window: ray propagation

- Calculate phase shift caused by the insertion of the window into an interferometer.
- Ray optics:
 - Add up optical path for each segment
 - Subtract optical path w/o window

Tilted window: wave propagation

• Write expression for tilted plane wave

$$E(x,z) = E_0 \exp\left[i\left(k_x x + k_z z\right)\right] = E_0 \exp\left[i\frac{\omega}{c}n\left(x\sin\theta_2 + z\cos\theta_2\right)\right]$$

Snell's Law: phase across surfaces is conserved

 $k_{x}x = \frac{\omega}{c}n\sin\theta \quad \text{is constant}$ $\Delta\phi = (k_{2}\cos\theta_{2})L_{w} - (k_{1}\cos\theta_{1})L_{w}$

 This approach can be used to calculate phase of prism pairs and grating pairs

Multiple-beam interference: The Fabry-Perot Interferometer or Etalon

A Fabry-Perot interferometer is a pair of **parallel** surfaces that reflect beams back and forth. An etalon is a type of Fabry-Perot interferometer, and is a piece of glass with parallel sides.

The transmitted wave is an infinite series of multiply reflected beams.

Multiple-beam interference: general formulation

r, t = reflection, transmission coefficients from air to glassr', t' = ""from glass to air

δ = round-trip phase delay inside medium = k₀(2 n L cos θ_t)

Transmitted wave:

$$E_{0t} = tt' e^{-i\delta/2} E_0 \left(1 + (r')^2 e^{i\delta} + ((r')^2 e^{i\delta})^2 + ((r')^2 e^{i\delta})^3 + \dots \right)$$

Reflected wave:

$$E_{0r} = rE_0 + tt'r'e^{i\delta}E_0 + tt'r'(((r')^2 e^{i\delta})^2 E_0 + \dots$$

Stokes Relations for reflection and transmission

Notes:

- relations apply to angles connected by Snell's Law
- true for any polarization, but not TIR
- convention for which interface experiences a sign change can vary

$$\begin{aligned} & \text{Fabry-Perot transmission} \\ & \text{Stokes' } r' = -r \\ & \text{relations } r'^2 = r^2 \\ & \text{relations } r'^2 = r^2 \\ & \text{transmitted wave field is:} \\ & E_{0r} = tr' e^{i\delta/2} E_0 \left(1 + (r')^2 e^{i\delta} + ((r')^2 e^{i\delta})^2 + ((r')^2 e^{i\delta})^3 + ... \right) \\ & = tr' e^{i\delta/2} E_0 \left(1 + r^2 e^{i\delta} + (r^2 e^{i\delta})^2 + (r^2 e^{i\delta})^3 + ... \right) = tr' e^{i\delta/2} E_0 \sum_{n=0}^{\infty} (r^2 e^{i\delta})^n \\ & \Rightarrow \qquad E_{0r} = \frac{tr' e^{i\delta/2}}{1 - r^2 e^{-i\delta}} E_0 \\ & \text{Where:} \\ & \Rightarrow \qquad E_{0r} = \frac{tr' e^{i\delta/2}}{1 - r^2 e^{-i\delta}} E_0 \\ & \text{Power transmittance:} \quad T \equiv \left| \frac{E_{0r}}{E_0} \right|^2 = \left| \frac{tr' e^{i\delta/2}}{1 - r^2 e^{i\delta}} \right|^2 = \frac{(tr')^2}{(1 - r^2 e^{+i\delta})(1 - r^2 e^{-i\delta})} \\ & = \left[\frac{(tr')^2}{\{1 + r^4 - 2r^2 \cos \delta\}} \right] = \left[\frac{(1 - r^2)^2}{\{1 + r^4 - 2r^2 [1 - 2\sin^2(\delta/2)]\}} \right] = \left[\frac{(1 - r^2)^2}{(1 - 2r^2 + r^4 + 4r^2 \sin^2(\delta/2)]\}} \right] \\ & \text{Dividing numerator and denominator by } (1 - r^2)^2 \\ & \qquad T = \frac{1}{1 + F \sin^2(\delta/2)} \\ & \text{where:} \quad F = \left[\frac{2r}{1 - r^2} \right]^2 \end{aligned}$$

Multiple-beam interference: simple limits

Reflected waves

$$T = \frac{1}{1 + F\sin^2\left(\delta / 2\right)}$$

Full transmission: $sin() = 0, d = 2 \pi m$

Minimum transmission: sin() = 1, d = 2 π (m+1/2)

Constructive interference for reflected wave

Etalon transmittance vs. thickness, wavelength, or angle π 1

- The transmittance varies significantly with thickness or wavelength.
- We can also vary the incidence angle, which also affects δ .
- As the reflectance of each surface (R=r²) approaches 1, the widths of the high-transmission regions become very narrow.

The Etalon Free Spectral Range

The Free Spectral Range is the wavelength range between transmission maxima.

1/(round trip time)

Etalon Linewidth

The Linewidth δ_{LW} is a transmittance peak's full-width-half-max (FWHM).

$$T = \frac{1}{1 + F\sin^2\left(\delta / 2\right)}$$

- A maximum is where $\delta/2 \approx m\pi + \delta'/2$ and $\sin^2(\delta/2) \approx \delta'/2$
- Under these conditions (near resonance),

$$T = \frac{1}{1 + F\delta'^2 / 4}$$

• This is a Lorentzian profile, with FWHM at:

$$\frac{F}{4} \left(\frac{\delta_{LW}}{2} \right)^2 = 1 \quad \Rightarrow \quad \delta_{LW} \approx 4 / \sqrt{F}$$

• This transmission linewidth corresponds to the minimum resolvable wavelength.

Etalon Finesse ≈ resolution

The Finesse, \Im , is the ratio of the Free Spectral Range and the Linewidth:

Using:
$$F = \left[\frac{2r}{1-r^2}\right]^2$$

$$\Im = \frac{\pi}{1-r^2} \qquad \text{taking } r \approx 1$$

The Finesse is the number of wavelengths the interferometer can resolve.

Tools: fixed plate Fabry-Perot

Tools: scanning Fabry-Perot

Resonator with piezo control over mirror separation http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=859

- Wavelength range: 535-820nm (ours)
- SA200 (ours)
 - FSR 1.5 GHz
 - Finesse > 200
 - Resolution 7.5MHz
- SA210
 - FSR 10 GHz
 - Finesse > 150
 - Resolution 67MHz

Multilayer coatings

Typical laser mirrors and camera lenses use many layers.

The reflectance and transmittance can be custom designed

Quarter-wave stack

Multilayer thin-films: wave/matrix treatment

- Use boundary conditions to relate fields at the boundaries
- Phase shifts connect fields just after I to fields just before II
- Express this relation as a transfer matrix
- Multiply matrices for multiple layers

High-reflector design

Reflectivity can reach > 99.99% at a specific wavelength > 99.5% for over 250nm Bandwidth and reflectivity are better for "S" polarization.

Interference filter design

A thin layer is sandwiched between two high reflector coatings -very large free spectral range, high finesse

- typically 5-10nm bandwidth, available throughout UV to IR