MATH-332: Linear Algebra

Vector Spaces

Section 4.1: Vector Spaces and Subspaces

pgs. 216 - 222

	<u>Lecture</u> : Vector Spaces and Subspaces
Topics:	Definition of vector space
	examples of vector spaces
	Subspaces w/ examples
Problems	Prac: 1, 2
	Prob: 5-8, 13, 14, 23, 24, 25 - 30 (proofs!)

Section Goals

- Understand how the concept of \mathbb{R}^n can be extended to the concept of a linear vector space and how this mathematical structure can appear in various forms that are critically **not** \mathbb{R}^n , but do share its algebraic structure.
- Study the concept of a vector subspace and understand how this naturally arises from the definition of spanning sets.

Section Objectives

- Define a vector space and show that \mathbb{R}^n satisfies the definition of a vector space.
- Provide examples of 'abstract vector spaces.' That is, show that other mathematical structures share the same algebraic structure of \mathbb{R}^n and thus are also examples of vector spaces.
- Define a vector subspace and provide examples.
- State theorem 4.1.1 on page 221, which says that given elements of a vector space the set spanned by these vectors forms a vector subspace, and provide a sketch of its proof.

Chapter: 4

July 13, 2009