Course Syllabus

http://ticc.mines.edu/

Summer 2009

Text	E. Kreyszig, <u>Advanced Engineering Mathematics</u> , 9 th edition, Wiley, New York, 2006		
Course Description	Introduction to partial differential equations, with applications to physi- cal phenomena. Fourier series, Linear Algebra with emphasis on sets of simultaneous equations. Prerequisite: MATH225 or equivalent.		
Sections	A : 11:00am-12:20pm Location: Meyer Hall 357		
Instructor Info	Instructor: Scott StrongPhone: 303.384.2446Office: Chauvenet Hall 278Email: math348.summer2009@gmaOffice Hours: MTWR12:20am-2:00pm		
Grading	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Important Dates	First Day of ClassJune 15Last Day to Drop Without a WJune 23Last Day to WithdrawJuly 10Last Day of ClassAugust 6		
Academic Honor Code	I pledge to uphold the high standards of academic ethics and integrity expressed by the Colorado School of Mines Student Honor Code by which I am bound. In particular, 'I will not misrepresent the work of others as my own, nor will I give or receive unauthorized assistance in the performance of academic coursework.' I understand that my instructor will report any infraction of academic integrity to the Department Head and that any such matter will be investigated and prosecuted fully.		

Section	Pages	Key Concepts
7.1, 7.2	272-286	Algebra, Associativity, Commutativity, Distribution,
		Inner-Product, Outer-Product, Matrix Product, Sym-
		metric, Skew-Symmetric
7.3,7.5	287-295, 302-	Linear System, Existence and Uniqueness, Gauss Elim-
	305	ination, Row Echelon Form, Fundamental Theorem for
		Linear Systems, Homogeneous and Nonhomogeneous sys-
		tems.
7.7-7.8	308-314	Determinant, Cramer's Theorem, Matrix Inverse, Or-
		thogonal Matrix
7.4, 7.9	296-301, 323-	Linear Dependence, Basis, Dimension, Rank, Span, Row
	329	Space, Column Space, Null Space, Vector Space, Inner
		Product Space
8.1	334-339	Eigenvalue, Spectra, Eigenvector, Eigenfunction
8.3	345-348	Symmetric, Skew-Symmetric, Orthogonal, Transforma-
		tions, Spectra
8.4	349-355	Eigenbasis, Diagonalization, Quadratic Form, Definite-
		ness
Review of	N/A	Function, Even, Odd, Periodic Function, Trigonometric
Functions		Function, Factorial Function, Gamma Function, Bessel
		Function of the First Kind
11.1, 11.3	478-486, 490-	Fourier Series, Fourier Coefficents, Fourier Series of Func-
	495	tions with Symmetry
11.2	487-489	Domain Scaling Properties
11.4	496-498	Euler's Formula, Complex Fourier Series
11.6	502-505	Trigonometric Approximation
11.7-11.8	506-517	Fourier Integral, Fourier Sine/Cosine Transform
11.9	518-528	Fourier Transform, time/space domain, frequency do-
		main, spectral representation, convolution, Green's func-
		tion, Frequency Response
Review of DE,	535-537	Differential Equation, Vocabulary, Linear ODE's, Bound-
12.1		ary Value Problems, Simple Harmonic Oscillators,
		Bessel's Equation
Flows and	N/A	Divergence Theorem, Conservation Equation, Constitu-
Conservations		tive Equation, Fourier's Law of Heat Conduction
Laws		
12.5	552-561	Boundary Conditions, Separation of Variables, Periodic
		Extension
Inhomogeneity	N/A	Extension of Fourier Methods
12.2-12.4	538-551	Ideal Wave Equation, Vibrations, D'Alebert's Solution
12.6	562-568	Cauchy-Problem, Heat Kernel
12.9	579-586	Multivariate Chain Rule, Laplacian in Polar Coordinates,
		Fourier-Bessel Series
12.10	587-593	Cylindrical and Spherical Geometries
12.11	594-596	Laplace Transforms and PDE's
Acoustics	N/A	Linear Approximations and Small Amplitude Vibrations

MATH348 - Summer2009 - Tentative Schedule¹

¹A listing of recommended problems from the text will be given in the header box of each 'lecture slide' posted on the ticc website.