Todoy: Newtonian \rightarrow Lagrangian $(7.6) ; 7.1 \rightarrow 7.3$
Moaday'. Lagrangian (move); 7.4 $\rightarrow 7.7$.
Hamilton's Principle: Nature minimizes:

$$
\begin{aligned}
& \int_{\text {tion }}^{t h} T-u d t \\
& L \equiv T-U \\
& \text { ingrangian } \\
& \Rightarrow \quad \frac{\partial L}{\partial x}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\varnothing \quad \text { in } 4 \text { 1-0. }
\end{aligned}
$$

Let's derive it from Newton's 2nㅡㅡ Lawr:

$$
\sum \vec{F}=\dot{\vec{p}}
$$

Splot it iento $\& \vec{F}_{a}+\sum \vec{F}_{c}$ constraints.

$$
\sum \stackrel{\rightharpoonup}{F}_{a}+\varepsilon \vec{F}_{c}-\dot{\vec{p}}=\phi
$$

If our object were displaced by a "virtual displacement" $\delta \vec{r}$, not a real displarement, an arbitraug displacement I control.

$$
\left(\varepsilon \vec{F}_{a}+\varepsilon \vec{F}_{c}-\dot{\vec{p}}\right) \cdot \delta \vec{r}=\varnothing
$$

Assumption: \& $\vec{F}_{c} \cdot \delta \vec{r}$ for all reasonable $\delta \vec{r}$ is ϕ.

$$
\begin{aligned}
& \sum \vec{F}_{a} \cdot \delta \vec{r}-\dot{\vec{p}} \cdot \delta \vec{r}=\varnothing \text { : } \\
& \text { : } F_{a x} \delta_{x}-\dot{P}_{x} 8 x=8 \geqslant \text { No sums }
\end{aligned}
$$

$$
\begin{aligned}
& F_{1 z} \delta_{z}-\dot{p}_{z} \delta_{z}=\varnothing \\
& \operatorname{ur} \sum_{i}\left(F_{a i} \delta x_{i}-\dot{P}_{i} \delta x_{i}=\varnothing ; i=1,2,3\right. \text {. }
\end{aligned}
$$

If I, want to change coordinates: egg. Soph lar lord.

$$
\begin{aligned}
& \text { change coordinates } \\
& \begin{aligned}
x=x(r, \theta, \phi): y & =y(r, \theta, \phi) ; z=z(r, \theta, \phi) \\
& =r \sin \theta \cos \phi
\end{aligned}=r \sin \theta \sin \phi=r \cos \theta
\end{aligned}
$$

2-0 polar coors: $x=r \cos \theta ; y r \sin \theta$

$$
\begin{aligned}
& x_{i}=x_{i}\left(q_{1}, q_{i}, q_{i} ; t\right)=x_{i}\left(q_{j} ; t\right) \\
& \dot{x}_{i}=\sum_{j} \frac{\partial x_{i}}{\partial q_{j}} \dot{\sigma}_{j}+\frac{\partial x_{i}}{\partial t} \text { i ن்षn. () } \\
& \delta x_{i}=\sum_{j} \frac{\partial x_{i}}{\partial s_{j}} \delta q_{j} \\
& \Rightarrow \sum_{i} F_{a i} \delta x_{i}=\sum_{i} F_{a i} \frac{\partial x_{i}}{\partial q_{j}} \delta q_{j}=\sum_{i} Q \delta q_{j} \\
& Q_{j} \equiv \text { generalized force: } \\
& \text { in the } 8 ; \text { j direction }
\end{aligned}
$$

eg. 20 polar: $\varepsilon F_{a i} \delta x_{i}=F_{a x} \delta x+F_{a y} \delta y$

$$
\begin{aligned}
\delta x_{i} & =\sum_{j} \frac{\partial x_{i}}{\partial q_{j}} \delta q_{j} \\
\delta x & =\frac{\partial x}{\partial r} \delta r+\frac{\partial x}{\partial \theta} \delta \theta ; \delta y-\frac{\partial g}{\partial r} \delta r+\frac{\partial y}{\partial \theta} \delta \theta \\
\delta x & =\cos \theta \delta r-r \sin \theta \delta \theta ; \delta y=\sin \theta \delta r+r \cos \theta \delta \theta \\
\sum_{i} F_{a i} \delta x_{i} & =\sum_{j} \theta_{i} \delta q_{i j} \\
& =F_{a x}^{F_{a x}(\cos \theta \delta r-r \sin \theta \delta \theta)+F_{a y}(\sin \theta \delta r+r \cos \theta \delta \theta)} \\
& =\underbrace{\left(F_{a x} \cos \theta+F_{a y} \sin \theta\right)}_{Q_{r}=F_{w}} \delta r+\underbrace{\left(-r F_{a r} \sin \theta+r F_{a j} \cos \theta\right) \delta_{\theta}}_{Q_{\theta}=\tau_{z}}
\end{aligned}
$$

Back to $\sum_{i} Q_{j} \delta q_{j j}-\sum_{i} m \ddot{x}_{i} \delta x_{i}=\varnothing$
Consider: $\frac{d}{d t}\left(m \dot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}\right)=m \ddot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}+m \dot{x}_{i} \frac{d}{d t}\left(\frac{\partial x_{i}}{\partial q_{j}}\right)$

$$
=m \ddot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}+m \dot{x}_{i} \frac{\partial \dot{x}_{i}}{\partial q_{j}}
$$

$$
\frac{\partial \dot{x}_{i}}{\partial \sigma_{j}}
$$

$$
\begin{aligned}
& \rightarrow m \ddot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}=\frac{d}{d t}\left(m \dot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}\right)-m \dot{x}_{i} \frac{\partial \dot{x}_{i}}{\partial q_{j}} \\
& \text { From } \Theta \frac{\partial x_{i}}{\partial \sigma_{j}}=\frac{\partial \dot{x}_{i}}{\partial \dot{\sigma}_{j}} \\
& =\frac{d}{d t}\left(m \dot{x}_{i} \frac{\partial \dot{x}_{i}}{\partial \dot{q}_{j}}\right)-m \dot{x}_{i} \frac{\partial \dot{x}_{i}}{\partial q_{j}} \text {, Now suer } i \text {. } \\
& \frac{\partial}{\partial *}\left(\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}+\dot{x}_{3}^{2}\right)\right)=m \dot{x}_{1} \frac{\partial \dot{x}_{1}}{\partial *}+m \dot{x}_{2} \frac{\partial \dot{x}_{y}}{\partial \dot{x}_{2}} \\
& \text { twi } \frac{\partial \dot{x}_{3}}{\partial{ }_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sum_{i}^{m} m \dot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}=\frac{d}{d t}(\frac{\partial}{\partial \dot{q}_{j}}(\underbrace{\left(\frac{1}{2} m v^{2}\right.}))-\frac{\partial}{\partial q_{j}} \cdot(\underbrace{\left(\frac{1}{2} m v^{2}\right.}_{T}) \\
&=\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{j}} \\
& {\left[\sum Q_{j} \delta q_{i j}-\varepsilon_{j}(v) \delta q_{i}\right]=\varnothing } \\
& {\left[\frac{d}{d t}\left(\frac{\partial T}{\partial q_{j}}\right)-\frac{\partial T}{\partial q_{j}}-\sum Q_{j}\right] \delta \varepsilon_{j}=\varnothing }
\end{aligned}
$$

Assumption: \vec{F}_{a} can be written as $-\vec{\nabla} u$

$$
\nu \sum_{j}(\underbrace{\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{i_{j}}}-\left(-\frac{\partial u}{\partial q_{j}}\right)} \underbrace{\delta q_{j}} \underbrace{\delta}_{\text {inde }}=\phi
$$

$$
\underbrace{\left.b_{j}\right)-\overline{\partial q_{j}}\left(\overline{\partial q_{j}}\right)}_{\text {each coesf }=\phi} \int_{\text {independent. }}^{\delta_{1}}
$$

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial}{\partial q_{j}}(T-u)=\varnothing \text { for each } j
$$

Last ascumption: U doesn't depentr on qoj $_{j}$ explisitly.

$$
\frac{d}{d t}\left(\frac{\partial(T-n)}{\partial \dot{q}_{j}}\right)-\frac{\partial}{\partial q_{j}}(T-h)=\varnothing
$$

$$
\begin{aligned}
& F_{\text {ai }}=-\frac{\partial u}{\partial x_{i}} \\
& Q_{i}=\sum_{i} F_{a i} \frac{\partial x_{i}}{\partial q_{j}}=\sum_{i}-\frac{\partial u}{\partial x_{i}} \frac{\partial x_{i}}{\partial q_{j}}=-\frac{\partial u}{\partial q_{j}} \text { \{That's it's def } \mu \text { \}. }
\end{aligned}
$$

e.g.: polar coords. no potential

$$
\begin{aligned}
& T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \quad \vec{v}=\dot{r} \hat{r}+(r \dot{\theta}) \hat{\theta} \\
& u=\emptyset \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{r}}\right)-\frac{\partial T}{\partial r}=Q_{r}<\begin{array}{c}
\text { other forces outside of } \\
u \text {. }
\end{array} \\
& \frac{d}{d t}(m \dot{r}) \quad{ }_{m} \stackrel{1}{\theta^{2}} \\
& m \ddot{r}-m_{r} \dot{\theta}^{2}=Q_{r}=F_{s} \\
& \frac{d}{\partial t}\left(\frac{\partial T}{\partial \dot{\theta}}\right)-\frac{\partial T}{\partial \theta}=Q_{\theta} \\
& \frac{d}{d t}\left(m r^{2} \dot{\theta}\right) \quad \uparrow_{\phi}=Q_{\theta} \\
& 2 m r \dot{r} \dot{\theta}+m r^{2} \ddot{\theta}=\tau_{z, a x i s}=F_{\theta} r \\
& \rightarrow F_{*}=m \sim \ddot{\theta}+2 m \dot{r} \dot{\theta} \\
& \text { Same as } \\
& \text { frown lest. }
\end{aligned}
$$

