
MATH 225 - Differential Equations June 1 , 2008
Homework 5, Field 2008 Not Due Date: June 5, 2008

Second-Order Linear Equations - Mass-Spring Systems - Power Series

1. Consider the following second-order linear ordinary differential equation with constant coefficients,

a
d2y

dt2
+ b

dy

dt
+ cy = f(t), a, b, c ∈ R. (1)

Solve (1) for the following cases, when possible solve for any unknown coefficients,

(a) a = 1, b = −2, c = −3, f(t) = 3e−t.

(b) a = 1, b = 4, c = 4, f(t) = 3e−t + t2.

(c) a = 1, b = −4, c = 13, f(t) = 0, subject to, y(0) = 1 and y′(0) = −1.

(d) a = 1, b = 0, c = 9, f(t) = 2 sin(2t).

(e) a = 1, b = 0, c = 9, f(t) = cos(3t).

2. Consider the model equation for a mass suspended from an ideal spring. If we include the effects of frictional
forces and an external applied force, f(t), we can derive from force laws3 the second-order linear ordinary
differential equations with constant coefficients:

m
d2y

dt2
+ b

dy

dt
+ ky = f(t), m, b, k ∈ R+ ∪ {0}, (2)

(a) Convert the second-order linear ODE (3) to a system of first-order ODE’s.

(b) If f(t) = 0 for all t and b = 0 we call this unforced oscillator simple. Show that the fixed point of an
unforced simple harmonic oscillator is always a center.4

(c) We now consider the effects of friction using MassSpring and the systems defined by m = k = 1 and
b1 = 0, b2 = 0.5, b3 = 1, b4 = 1.5, b5 = 2. For each of the previous systems plot a trajectory whose
initial condition is somewhere near the center of the first quadrant and using these plots describe effects of
friction on the long-term behavior to each of the trajectories. 5

3. Now we consider the effects of external forcing on a simple harmonic oscillator.6 Of all of the external forces to
consider the most interesting involve periodic forcing. Here we consider an applied force given by
f(t) = F cos(ωt), F, ω ∈ R+ ∪ {0}. Run the program ForcedMassSpring for all permutations of the values,
F1 = 1, F2 = 2, ω1 = 0, ω2 = 0.5, ω3 = 0.75, ω4 = 1, plotting the trajectories whose initial condition is
roughly in the center of the first quadrant. Using this information respond to the following:

(a) How does constant forcing effect the fixed point of the system? 7

(b) Now considering the parameter ω, for ω < 1, how does oscillatory forcing effect the behavior of trajectories
in phase space?8

3Remember that when deriving this equation we used Hook’s law, which says that in the elastic limit the restoring force is linearly pro-
portional to the displacement/deformation. Outside of this limit the relationship becomes nonlinear and can be used to explain phenomenon
like non-reversible deformations associated with large displacements.

4We may call this oscillator simple but it is also classic example of a conservative system. In this case it is energy, which is conserved.
The notion of conserved quantities will be explored in the next homework and applied to nonlinear systems in chapter 5.3

5Friction is considered a dissipative effect. Normally when discussing a conservative system it is common to also discuss the effects of
corresponding dissipative effects. This may not always be as simple as studying the effects of a single term in the system.

6What we are about to see here is so important to physical systems prone to oscillations that we will study it again in the next homework
through the model equation (3) and not the displacement-velocity system found in problem (2).

7In mathematical terms the time-independent inhomogeneity has shifted the fixed point to be off the origin.
8Since the system is no longer autonomous there are no fixed points, however the trajectories do appear to be ‘orbiting’ points in phase

space and one of them seems to correspond to the fixed point of part (a). That is to say, though we do not have fixed points, by definition,
our understanding of them can be useful in describing non-autonomous cases.
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(c) Consider the case where ω = 0.75 and looking at the graph of y versus t notice that the curve is an oscillatory
function whose amplitude is itself also oscillating.9 This pattern, which occurs when the frequency of forcing
nears the frequency of natural oscillation, is called a beat pattern. Using http://en.wikipedia.org/wiki/
Beat_\%28acoustics\%29 explain the connection between this mass-spring phenomenon and acoustics.

(d) Explain what occurs to the mass-spring system when ω = 1 and give examples of other phenomenon, which
have similar qualitative features. 10

4. Consider the governing equation for a mass suspended from an ideal spring. Including forces due to friction,
and an external applied force, f(t), leads to the second order linear ordinary differential equations with constant
coefficients:

m
d2y

dt2
+ b

dy

dt
+ ky = f(t), m, b, k ∈ R+ ∪ {0}, (3)

(a) If b = 0 then the oscillator is called simple. Show that from the homogeneous (not forced) simple harmonic

oscillator one can derive the conservation law Etotal =
mv2

2
+
ky2

2
where v =

dy

dt
and Etotal is a constant.1

(b) Assume that m = k = 2 and graph the conservation law in the yv-plane for Etotal = 1, 4, 9. 2

(c) Show that, for an unforced simple harmonic oscillator, the that the solution can be written as yh(t) =
c1 cos(ω0t) + c2 sin(ω0t). Determine w0 in terms of m and k.

(d) Let f(t) = cos(αt), α ∈ R. Pick the form of the particular solution, yp(t), for the simple harmonic
oscillator. What happens when α = w0? Write down the functional form of the general solution for both
of these cases. (Do not solve for the undetermined coefficients)

(e) Consider the program BeatsAndResonance where a = 1.5.
i. Describe what happens to the general solution (green) as the circular frequency, ω, of forcing is changed

from 0.5 through 1.5. 3

ii. Describe the changes to the homogenous solution (blurple) and nonhomogenous solution (red), relative
to one another, as the frequency of forcing is changed from 0.5 through 1.5.

iii. If the energy of a single cycle of a sinusoidal-wave is proportional to the square of the amplitude then
compare the amount of energy in one beat envelope for when ω ≈ 0.5 to when ω ≈ 1.2. What happens
to the energy when ω ≈ 1.5?

5. Consider the ordinary differential equation:

y′′ − y = 0 (4)

We know that the general solution to this equation is y(t) = c1e
t + c2e

−t. It is common to write the solutions

to (4) in terms of the hyperbolic trigonometric functions, sinh(t) =
et − e−t

2
, cosh(t) =

et + e−t

2
.

(a) Show that y(t) = b1 sinh(t) + b2 cosh(t) is a solution to the differential equation (4).

(b) Show that if c1 =
b1 + b2

2
and c2 =

b1 − b2
2

then y(t) = c1e
t + c2e

−t = b1 cosh(t) + b2 sinh(t).

(c) Assume that y(t) =
∞∑

n=0

ant
n and find the general solution of (4) in terms of the hyperbolic sine and cosine

functions. 4

9We say that the higher frequency oscillations are bounded by a lower frequency envelope. Qualitative changes to this envelope are
important in the diffraction pattern of waves and as we will see, in a moment, resonance.

10You may want to consider the following website to guide your thoughts http://en.wikipedia.org/wiki/Resonance11

1In physics one would call this conservation law a constant of motion.
2These constants of motion are nothing more than trajectories of the simple harmonic oscillator in the phase-plane.
3You may find it useful to toggle the Envelope feature.
4The hyperbolic sine and cosine have the following Taylor’s series representations centered about t = 0:

cosh(t) =

∞X
n=0

t2n

(2n)!
sinh(t) =

∞X
n=0

t2n+1

(2n + 1)!
(5)
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