
MATH 348 - Advanced Engineering Mathematics February 4, 2008
Homework 4, Spring 2008 Due: February 13, 2008

Continuous Fourier Transform - Signal Processing - Green’s Functions

If a function is not periodic nor can it be periodically extended then the function has no Fourier series represen-
tation. However, in this case the function can have a Fourier integral representation. Analysis of the Fourier integral
representation1 reveals the complex Fourier transform pairs:

f(x) =
1√
2π

∫ ∞
−∞

f̂(ω)eiωxdω (1)

f̂(ω) =
1√
2π

∫ ∞
−∞

f(x)e−iωxdx (2)

We can connect (1)-(2) to the complex Fourier series. If a function is periodic then there exists a representation
of the function in the countably-infinite basis of imaginary-exponential functions. In this case the coefficients2 of
this expansion are given by an integral whose limits of integration are bounded.3 These coefficients quantify the
amplitude of oscillation for each discrete frequency of oscillation.4 In the case of (1) we have that the function f
has a representation in the uncountably-infinite basis of imaginary-exponential functions. In this case the coefficients
are given by an integral (2) whose limits of integration are unbounded.5 These coefficients quantify the amplitude of
oscillation for each continuous frequency of oscillation.

1. Now, we want to connect all of this to sections 11.7 and 11.8 in our text. We have that the Fourier integral
represents functions in the sine/cosine basis without requiring the function to be periodic. Now, what role does
symmetry play in this representation? With minimal work we see that if a function is even/odd then the Fourier
integral reduces to a Fourier cosine/sine integral.6 As with our original derivation of transform, if we look at
the interplay between the coefficient functions A(ω)/B(ω) and f(x) we find the transform pairs:

fc(x) =

√
2
π

∫ ∞
0

f̂(ω) cos(ωx)dω f̂c(ω) =

√
2
π

∫ ∞
0

f(x) cos(ωx)dx (3)

fs(x) =

√
2
π

∫ ∞
0

f̂(ω) sin(ωx)dω f̂s(ω) =

√
2
π

∫ ∞
0

f(x) sin(ωx)dx (4)

We call (3) the Fourier cosine transform pair and, surprisingly, we call (4) the Fourier sine transform.

(a) Show that fc(x) and f̂c(ω) are even functions and that fs(x) and f̂s(ω) are odd functions.7

(b) Show that if we assume that f(x) is an even function then (1)-(2) defines the transform pair given by (3).
Also, show that if f(x) is an odd function then (1)-(2) defines the transform pair given by (4). 8

Given,

f(x) =
{
A, 0 < x < a
0, otherwise

, A, a ∈ R+. (5)

(c) On the same graph plot the even and odd extensions of f .

(d) Find the Fourier cosine and sine transforms of f .

(e) Using the Fourier cosine transform show that
∫ ∞
−∞

sin(πω)
πω

dω = 1.

1See classnotes or Kreyszig pgs. 518-519
2also called weights

3Recall that our derivation lead to cn =
1

2π

Z L

−L

f(x)eiωnxdx where ωn =
nπ

L
.

4That is, for each ωn there is a corresponding cn where |cn|2 is a measure of the power of the sinusoids associated with ωn.
5In this case the behavior of f must be known everywhere instead of on the interval (−L,L).
6Kreyszig pg. 511
7Thus, if an input function has an even or odd symmetry then the transformed function shares the same symmetry.
8Thus, if an input function has symmetry then the Fourier transform is real-valued.
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2. Calculate the following transforms:

(a) F {f} where f(x) = δ(x− x0), x0 ∈ R.9

(b) F {f} where f(x) = e−k0|x|, k0 ∈ R+.

(c) F−1
{
f̂
}

where f̂(ω) =
1
2

(δ(ω + ω0) + δ(ω − ω0)) , ω0 ∈ R.

(d) F−1
{
f̂
}

where f̂(ω) =
1
2

(δ(ω + ω0)− δ(ω − ω0)) , ω0 ∈ R.

3. The convolution h of two functions f and g is defined as10,

h(x) = (f ∗ g)(x) =
∫ ∞
−∞

f(p)g(x− p)dp =
∫ ∞
−∞

f(x− p)g(p)dp. (6)

(a) Show that F {f ∗ g} =
√

2πF {f}F {g}.
(b) Find the convolution h(x) = (f ∗ g)(x) where f(x) = δ(x− x0) and g(x) = e−x.

4. Read the introductory paragraph of following websites http://en.wikipedia.org/wiki/Autocorrelation and
http://en.wikipedia.org/wiki/Cross-correlation and respond to the following:

(a) Write down an integral definition of cross-correlation and auto-correlation.

(b) Compare and contrast cross-correlation and convolution in terms of independent random variables described
by the probability distributions f and g.

(c) Describe an application of cross-correlation to signal processing.

5. Given the ODE,
y′ + y = f(x), −∞ < x <∞. (7)

Let f(x) = δ(x) and then:

(a) Calculate the frequency response associated with (7). 11

(b) Calculate the Green’s function associated with (7).

(c) Using convolution find the steady-state solution to the (7).

9Here the δ is the so-called Dirac, or continuous, delta function. This isn’t a function in the true sense of the term but instead what
is called a generalized function. The details are unimportant and in this case we care only that this Dirac-delta function has the propertyZ ∞
−∞

δ(x− x0)f(x)dx = f(x0). For more information on this matter consider http://en.wikipedia.org/wiki/Dirac_delta_function. To

drive home that this function is strange, let me spoil the punch-line. The sampling function f(x) = sinc(ax) can be used as a definition for
the Delta function as a→ 0. So can a bell-curve probability distribution. Yikes!

10Here wee keep the same notation as Kreysig pg. 523
11this is often called the steady-state transfer function
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