
Finally, the mean occupation number is

〈n〉 =
e−ξ

1− e−ξ
=

1
1− e−ξ

=
1

eβ}ω−1
, (30)

which is the same result we found by the first approach.

HW Problem. Schroeder problem 6.17, p. 231.

HW Problem. Schroeder problem 6.18, p. 231.

HW Problem. Schroeder problem 6.19, p. 231.

Exercise.

(a) Using methods similar to those used in the last example, show that
the mean value of the energy of any system in thermal contact with
a reservoir having temperature T is:

〈E〉 = − ∂

∂β
lnZ . (31)

(b) Show that for a single harmonic oscillator in thermal contact with a
reservoir,

〈E〉 =
(
〈n〉+

1
2

)
}ω . (35)

[EOC, Wed. 3/15/2006, #28]

Reading assignment. Schroeder, section 6.4.

It’s essentially trivial to extend the derivative trick to find mean values
of higher powers of the energy:

〈Em〉 =
∑

n Em
n e−βEn

Z
. (40)

First we take the mth derivative of the partition function:

∂m

∂βm
Z =

∂m

∂βm

∑
n

e−βEn

= (−1)m
∑

n

Em
n e−βEn

︸ ︷︷ ︸
Z 〈Em〉

. (41)

Then we solve for the average value, obtaining

〈Em〉 =
(−1)m

Z

∂mZ

∂βm
. (42)
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0.1.2 The equipartition theorem

Classical statistical mechanics

All of the statistical mechanics we’ve done so far has been applied to
quantum-mechanical systems. We even quantized the ideal gas in order
to be able to count the number of discrete microstates corresponding to
any given macrostate. The reason we’ve limited ourselves to quantum sys-
tems is principally that some of the treatment of classical systems suffers
from a need to make what appear, in a purely classical analysis, to be
ad hoc adjustments in order to make the classical results agree with the
classical limits for quantum-mechanical systems.

The ideal gas is a good example. We found its multiplicity to be

Ω =
εp

(2mU)1/2

V N (2πmU)3N/2

N !h3N

2
Γ
(

3N
2

) , (43)

which includes two odd-looking features for a classical system. One is the
presence of Planck’s constant, and the other is the division by N ! to account
for indistinguishability of the particles. That indistinguishability is only
an issue in quantum mechanics, where the many-particle wave function
must be appropriately symmetrized for the type of identical particles being
described. A purely classical derivation of the entropy of the ideal gas would
miss the contributions that arise from these two features of the multiplicity,
and fixing that up either requires some unsatisfying hand waving, or it
requires a quantum-mechanical calculation, such as we did.

Nevertheless, it is useful to be able to apply statistical mechanics to
classical systems, and the customary way to do that is through use of the
Hamiltonian formulation of classical mechanics. The state of a classical
system is completely specified in the Hamiltonian formalism by the gen-
eralized coordinates and momenta of all the particles. The Hamiltonian
function of the system depends on each of them:

H = H(q1, q2, . . . , q3N , p1, p2, . . . , p3N ) , (44)

where we’ve assumed there are exactly 6N coordinates and momenta for N
particles, which is typical of three-dimensional systems, but not universal.
It’s convenient to abbreviate the list of coordinates as simply q, taken to
represent the typically 3N -dimensional vector of generalized coordinates of
all the particles. Similarly, we’ll denote the typically 3N -dimensional vector
of generalized momenta of all the particles by p. Then the Hamiltonian is
a considerably easier to write:

H = H(q, p) . (45)

The space defined by all of the coordinates and momenta, generally of
dimension 6N , is referred to as phase space.

11



The time development of the system is controlled by the Hamiltonian
through Hamilton’s equations of motion:

q̇i(t) =
∂H(q, p)

∂pi
and ṗi(t) = −∂H(q, p)

∂qi
, (46)

of which there are 2N for an N -particle system.
Note also that the Hamiltonian (really its negative) can be obtained

from the Lagrangian via a Legendre transformation that replaces all the
generalized velocities by the corresponding generalized momenta as inde-
pendent variables:

L(q, q̇, t)−
∑

i

piq̇i = −H(q, p, t) , (47)

where the generalized momentum conjugate to the generalized coordinate
qi is

pi =
∂L
∂q̇i

. (48)

The equipartition theorem

We won’t need to make use of much of Hamiltonian mechanics in order
to derive the equipartition theorem. It mostly suffices to recall that the
Hamiltonian function plays the role of the energy of the system, and the
coordinates and momenta determine the state, as well as the Hamiltonian.
The probability distribution for the states of a classical system in thermal
contact with a reservoir looks much like its quantum-mechanical analog:

P(q, p) =
e−βH(q,p)

I
, (49)

where the normalization constant is

I =
∫

e−βH(q,p) d3Nq d3Np . (50)

The integral is taken over all values of the coordinates and momenta allowed
for the system. If the system is in a box, the coordinates will be restricted
to lie within the box, but the momenta can still have unlimited values. Be-
cause of the complication I mentioned above, that the classical expressions
must be tweaked to match the classical limits of their quantum-mechanical
analogs, the classical partition function is not simply the integral I, but
I/(h3NN !). Fortunately, we won’t have to worry about that, since we only
need the probability distribution.

Take note that the function P(q, p) is not a probability, but a proba-
bility density. The normalization integral I acquires dimensions through
the phase-space volume element d3Nq d3Np, so the probability distribution
function has dimensions of inverse phase-space volume. This means its in-
terpretation is that P(q, p) d3Nq d3Np is the probability that the phase space
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coordinates and momenta lie within the volume element d3Nq d3Np about
the values specified by q and p.

Now, as I mentioned when we first encountered the equipartition theo-
rem, the important coordinates and momenta are those appearing quadrati-
cally in the Hamiltonian function. For a system of identical three-dimensional
harmonic oscillators, the Hamiltonian looks like:

H(q, p) =
3N∑
i=1

(
p2

i

2m
+

K

2
q2
i

)
, (51)

where K is the spring constant. Both the coordinates qi and the momenta
pi appear quadratically.

For a system of noninteracting diatomic molecules, all the energy is
kinetic, but it can be decomposed into contributions from the linear motion
of the center of mass of each of the molecules and from the rotational motion
of each. The rotational coordinates for each molecule can be taken to be
the polar and azimuthal angles the bond axis makes with respect to a set
of Cartesian axes attached to the molecule and aligned some common set
of axes:

z

x

xn

zn

φ

θ

yn

y

For molecule i, we’ll denote the polar angle by θi and the azimuthal angle
by φi. The generalized momenta conjugate to these will be denoted by pφi

and pθi , respectively. Then one can show that the Hamiltonian function of
the system is

H =
3N∑
i=1

p2
i

2m
+

N∑
j=1

1
2I

(
p2

θj
+

p2
φj

sin2 θj

)
, (52)

where I is the moment of inertia of the molecule for rotation about an
axis perpendicular to the bond and passing through the center of mass
of the molecule. The center-of-mass momentum components pi appear
quadratically, as do the generalized momenta for the rotational motion.
Notice that the last term also contains sin2 θj , which is not quadratic,
so that coordinate will not contribute to the energy in the equipartition
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theorem. Also, it will not interfere with the quadratic dependence on pφj ,
as our derivation will show.

Notice also that this Hamiltonian contains no contributions from rota-
tion of the molecule about the bond axis or vibration of the atoms along
the bond axis. We argued in our original discussion on the equipartition
theorem that the moment of inertia for rotation about the bond axis is
so tiny that its minimum quantum excitation energy, proportional to the
inverse of the moment of inertia, is too large for excitation to occur at any
temperature below the decomposition temperature of the molecules. As
well, we argued that the vibrational quantum of excitation for common di-
atomic molecules is large enough to require temperatures well above room
temperature to excite vibrations.

With these two examples in mind, we’ll embark on our derivation of
the equipartition theorem. The strategy will be to single out one of the
quadratic coordinates or momenta for special treatment, showing that re-
gardless of the dependence of the Hamiltonian on the other coordinates and
momenta, the energy of the system will contain a contribution kT/2 arising
from the selected coordinate or momentum. Let x denote the coordinate
or momentum of interest, and let X denote all the other coordinates and
momenta, say M = 6N − 1 in number. Then the Hamiltonian function can
be decomposed into two parts, one proportional to x2 and one independent
of x:

H(q, p) = H(x,X) = A(X)x2 + B(X) , (53)

where A and B are functions of the other coordinates and momenta. For ex-
ample, for the diatomic molecular ideal gas the function A(X) multiplying
the generalized momentum component x = pφi is

A(X) =
1

2I sin2 θi

, (54)

and the function B(X) consists of all the other terms in the Hamiltonian.
The average value of the energy is obtained from the Hamiltonian and

the probability distribution in just the same way we calculated the aver-
age for a quantum-mechanical system, but now the sum is replaced by an
integral:

〈E〉 =

∫
H(x,X)e−βH dx dMX∫

e−βH dx dMX

=

∫
[A(X)x2 + B(X)]e−βH dx dMX∫

e−βH dx dMX

=
〈
Ax2

〉
+ 〈B〉 ,

(55)
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where the first term is the contribution due to x2. If we look more closely
at that contribution, we find

〈
Ax2

〉
=

∫
A(X)x2e−β[A(X)x2+B(X)] dx dMX∫

e−β[A(X)x2+B(X)] dx dMX

=

∫
A(X)e−βB(X)

(∫
x2e−βA(X)x2

dx

)
dMX∫

e−βB(X)

(∫
e−βA(X)x2

dx

)
dMX

.

(56)

In the denominator, we have the integral of a Gaussian:∫ ∞
−∞

e−αx2
dx =

(π

α

)1/2

, (57)

and the integral in the numerator can be obtained from the integral of the
Gaussian via the differentiation trick we’ve used previously for obtaining
sums of series: ∫ ∞

−∞
x2e−αx2

dx = − ∂

∂α

∫ ∞
−∞

e−αx2
dx

= − ∂

∂α

(π

α

)1/2

=
√

π

2
α−3/2 .

(58)

Here α = βA(X), so the mean value of Ax2 is

〈
Ax2

〉
=

∫
Ae−βB

√
π

2
(βA)−3/2 dMX∫ √

π(βA)−1/2e−βB dMX

=
1
2β

∫
A−1/2e−βB dMX∫
A−1/2e−βB dMX

=
1
2β

=
kT

2
.

(59)

Thus any quadratic coordinate or momentum contributes 1
2kT to the mean

value of the energy. Since any other term in the Hamiltonian that contains
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a quadratic coordinate or momentum makes a similar contribution, the
equipartition theorem follows immediately.

As an example, recall the classical harmonic crystal, consisting of N
atoms and having Hamiltonian

H =
3N∑
i=1

(
p2

i

2m
+

K

2
q2
i

)
, (60)

which has two quadratic terms for each dimension and each particle. Thus,
the equipartition theorem gives the mean total energy of the system as:

〈E〉 = U = 3NkT . (61)

Recall that this is a classical result, so it does not take into account the
quantum freeze-out of degrees of freedom at low temperatures. Thus, it
is useful as a quick way to find the energy of a system in a temperature
range in which the behavior is classical. That occurs, of course, when kT
is significantly larger than the quantum excitation energy.

For the diatomic gas of N molecules, we saw that the Hamiltonian could
be written in the form

H =
3N∑
i=1

p2
i

2m
+

N∑
j=1

1
2I

(
p2

θj
+

p2
φj

sin2 θj

)
, (62)

which has three translational quadratic terms per molecule and two rota-
tional quadratic terms per molecule. The energy given by the equipartition
theorem is then

U =
5
2
NkT . (63)

Recall also that for point particles (no rotational degrees of freedom)
the energy is

U =
3
2
NkT , (64)

which is just what the equipartition theorem gives if only the translational
quadratic terms are present in the Hamiltonian.

HW Problem. Schroeder problem 6.32, pp. 240–241.

16


