
Separation of Variables
or: How I Learned to Stop Worrying and Love Boundary Value Problems

April 20, 2010

Scott Strong

sstrong@mines.edu

Colorado School of Mines

Separation of Variables – p. 1/14



Overview/Keywords/References

Advanced Engineering Mathematics Slide Set Six

Separation of Variables : Separation Constant, BVP, Half-Range Expansions

Reference Text: EK 12.3, 12.5

• See Also:

· Lecture Notes : 13.LN.IntroToPDE

· Lecture Notes : 14.LN.HeatEquation

· Lecture Notes : 15.LN.WaveEquation
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Before We Begin

Quote of Slide Set Six

Homer Simpson: From now on, there are three ways to do
things: the right way, the wrong way, and the Max Power way.

Bart Simpson: Isn’t that the wrong way?

Homer Simpson: Yes, but faster!

The Simpsons S10E13 : Homer to the Max (1999)
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Problem Statement

Suppose we want to model the lateral flow of heat in a object
L-units long, with initial temperature f(x), whose endpoints
are connected to a heat bath of constant temperature on a
relative scale. The temperature evolution is well-modeled by,

∂u

∂t
= c2

∂2u

∂x2
, (1)

(x, t) ∈ (0, L) × (0,∞), c2 =
κ

ρσ
, (2)

u(x, 0) = f(x), (3)

The interface conditions are modeled by,

u(0, t) = 0, u(L, t) = 0. (4)

Question: Given (3) evolved by (1) subject to (4) find the
temperature u at any point (x, t).
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Solution Overview

The solution will be found by a three-step process:

1. Separation Step : Assume that the spatial component of u

decouples from the temporal component. That is, we shall
assume:

u(x, t) = F (x)G(t) (5)

Partial derivatives on u will be exchanged for ordinary
derivatives on F and G. The PDE (1) will be traded for
infinitely-many ODEs.

2. Solve the associated ODEs with boundary conditions
(BVP).

3. Apply superposition (linearity) and Fourier methods to
solve the initial value problem (IVP).
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Step 1 : Separation of Variables - I

Assume/hope that u(x, t) = F (x)G(t). Thus,

∂u

∂t
= ∂t(F (x)G(t)) = F (x)∂tG(t) = F (x)

dG

dt
= F (x)Ġ(t), (6)

∂2u

∂x2
= ∂xx(F (x)G(t)) = G(t)

d2F

dt2
= G(t)F ′′(x), (7)

which implies that,

∂u

∂t
= c2

∂2u

∂x2
⇐⇒ Ġ(t)F (x) = c2G(t)F ′′(x), (8)

and

Ġ(t)

c2G(t)
=

F ′′(x)

F (x)
, (9)

for all (x, t) ∈ (0, L) × (0,∞).
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Step 1 : Separation of Variables - II

Notice that the LHS of (9) varies with respect to t while the
RHS of (9) varies with respect to x. Here is the important
argument:

• If these two sides are equal for all x and t then they must
be equal to a function that has neither x’s nor t’s.

That is,

Ġ(t)

c2G(t)
=

F ′′(x)

F (x)
= −λ ∈ R, (10)

where λ is called the ‘separation constant’. From this we have,

Ġ = −c2λG, (11)

F ′′ + λF = 0. (12)
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Step 2 : Solving the ODE’s

The temporal problem is easy:

Ġ = −c2λG ⇒ G(t) = αe−c2λt, α ∈ R. (13)

The spatial problem is not as easy. Remember that the
physical problem mandates the spatial interface conditions
(4), which must be applied at this point. First, we note,

u(0, t) = F (0)G(t) = 0 ⇒ F (0) = 0 or G(t) = 0, (14)

u(L, t) = F (L)G(t) = 0 ⇒ F (L) = 0 or G(t) = 0 (15)

If G(t) = 0 for all t then u(x, t) = F (x)G(t) = 0 for all t. This is
the trivial solution, which we ignore. Thus,

F (0) = 0, F (L) = 0. (16)
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Step 2 : Solving the BVP - I

We now have the boundary value problem,

F ′′(x) + λF (x) = 0, λ ∈ R (17)

F (0) = 0, F (L) = 0. (18)

If F (x) = erx then F ′′ + λF = erx(r2 + λ) = 0 and r = ±
√
−λ.

We now have the three general solutions, which depend on λ:

λ > 0 : F1(x) = c1e
i
√

λx + c2e
−i

√
λx = b1 sin(

√
λx) + b2 cos(

√
λx)

λ < 0 : F2(x) = c3e
√

|λ|x + c4e
−
√

|λ|x = b3 sinh(
√

|λ|x) + b4 cosh(
√

|λ|x)

λ = 0 : F3 = c5e
0 + c6xe0 = b5x + b6

From these we must find all nontrivial functions, which also
satisfy (18).
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Step 2 : Solving the BVP - II

Geometry indicates b2 = b3 = b4 = b5 = b6 = 0 and,

F (L) = b1 sin
(√

λL
)

= 0 ⇒ b1 = 0 or sin(
√

λL) = 0. (19)

Setting b1 = 0 would imply that F (x) = 0 for all x and
consequently u(x, t) is trivial. Thus we require,

sin(
√

λL) = 0 ⇒
√

λL = nπ, n = 1, 2, 3, . . . , (20)

which implies that there are countably-infinitely many λ’s and
functions that solve the BVP given by,

Fn(x) = bn sin
(

√

λnx
)

= bn sin
(nπ

L
x
)

, n = 1, 2, 3, . . . . (21)
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Step 2 : BVP - Details

Geometric arguments are always fast but often hide the
details. Using algebra instead of geometry gives,

F1(0) = b1 sin(
√

λ · 0) + b2 cos(
√

λ · 0) = b2 = 0 ⇒ b2 = 0,

F2(0) = b3 sinh(
√

|λ| · 0) + b4 cosh(
√

|λ| · 0) = b4 = 0 ⇒ b4 = 0,

F3(0) = b5 · 0 + b6 = b6 = 0 ⇒ b6 = 0,

F2(L) = b3 sinh(
√

|λ|L) = b3

(

e
√

|λ|L − e−
√

|λ|L

2

)

= 0 ⇒ b3 = 0,

F3(L) = b5L = 0 ⇒ b5 = 0.
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Step 3 : General Solution as a Linear Combination

We now have that
√

λn = nπ/L, which implies temporal
solutions given by,

Gn(t) = αne−c2λnt = αne−( cnπ

L
)
2

t, n = 1, 2, 3, . . . , (22)

and many solutions un to (1) given by,

un(x, t) = Fn(x)Gn(t) = bnαn sin
(

√

λnx
)

e−c2λnt (23)

= Bn sin
(nπ

L
x
)

e−( cnπ

L
)
2

t, n = 1, 2, 3, . . . . (24)

Since (1) is linear the linear combination of solutions is also a
solution. Thus the general solution is given by,

u(x, t) =

∞
∑

n=1

un(x, t) =

∞
∑

n=1

Bn sin
(nπ

L
x
)

e−( cnπ

L
)
2

t (25)
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Step 3 : Application of the Initial Condition

We still have unknown constants Bn but we haven’t used,

u(x, 0) = f(x). (26)

From the general solution we have,

u(x, 0) = f(x) =
∞
∑

n=1

Bn sin
(nπ

L
x
)

e−( cnπ

L
)
2·0 (27)

=
∞
∑

n=1

Bn sin
(nπ

L
x
)

, (28)

which is a Fourier sine series. Thus, we have that Bn are
Fourier coefficients given by,

Bn =
2

L

∫

L

0

f(x) sin
(nπ

L
x
)

dx. (29)
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Conclusions

We have found the evolution of (3) modeled by (1) subject to
(4). From this we note:

• The initial condition f(x) has a Fourier sine half-range
expansion.

• The general solution evolves each mode in the Fourier
expansion of f by a factor of e−c2λnt.

• The separation assumption of u(x, t) = F (x)G(t) was not
too restrictive since λn shares information between the
spatial and temporal components.

• The PDE (1) defines an infinite-dimensional space with a
Fourier basis. Thus, solutions to (1) can represented as
linear combination in this basis.
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