Separation of Variables

or: How I Learned to Stop Worrying and Love Boundary Value Problems April 20, 2010

Scott Strong
sstrong@mines.edu

Colorado School of Mines

Overview/Keywords/References

Advanced Engineering Mathematics

Separation of Variables: Separation Constant, BVP, Half-Range Expansions

Reference Text: EK 12.3, 12.5

- See Also:
- Lecture Notes : 13.LN.IntroToPDE
- Lecture Notes : 14.LN.HeatEquation
- Lecture Notes : 15.LN.WaveEquation

Before We Begin

Quote of Slide Set Six

Homer Simpson: From now on, there are three ways to do things: the right way, the wrong way, and the Max Power way.

Bart Simpson: Isn't that the wrong way?

Homer Simpson: Yes, but faster!

The Simpsons S10E13 : Homer to the Max (1999)

Problem Statement

Suppose we want to model the lateral flow of heat in a object L-units long, with initial temperature $f(x)$, whose endpoints are connected to a heat bath of constant temperature on a relative scale. The temperature evolution is well-modeled by,

$$
\begin{align*}
\frac{\partial u}{\partial t} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \tag{1}\\
(x, t) \in(0, L) & \times(0, \infty), \quad c^{2}=\frac{\kappa}{\rho \sigma}, \tag{2}\\
u(x, 0) & =f(x), \tag{3}
\end{align*}
$$

The interface conditions are modeled by,

$$
\begin{equation*}
u(0, t)=0, u(L, t)=0 \tag{4}
\end{equation*}
$$

Question: Given (3) evolved by (1) subject to (4) find the temperature u at any point (x, t).

Solution Overview

The solution will be found by a three-step process:

1. Separation Step : Assume that the spatial component of u decouples from the temporal component. That is, we shall assume:

$$
\begin{equation*}
u(x, t)=F(x) G(t) \tag{5}
\end{equation*}
$$

Partial derivatives on u will be exchanged for ordinary derivatives on F and G. The PDE (1) will be traded for infinitely-many ODEs.
2. Solve the associated ODEs with boundary conditions (BVP).
3. Apply superposition (linearity) and Fourier methods to solve the initial value problem (IVP).

Step 1 : Separation of Variables - I

Assume/hope that $u(x, t)=F(x) G(t)$. Thus,

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\partial_{t}(F(x) G(t))=F(x) \partial_{t} G(t)=F(x) \frac{d G}{d t}=F(x) \dot{G}(t), \tag{6}\\
\frac{\partial^{2} u}{\partial x^{2}} & =\partial_{x x}(F(x) G(t))=G(t) \frac{d^{2} F}{d t^{2}}=G(t) F^{\prime \prime}(x) \tag{7}
\end{align*}
$$

which implies that,

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \Longleftrightarrow \dot{G}(t) F(x)=c^{2} G(t) F^{\prime \prime}(x) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\dot{G}(t)}{c^{2} G(t)}=\frac{F^{\prime \prime}(x)}{F(x)} \tag{9}
\end{equation*}
$$

for all $(x, t) \in(0, L) \times(0, \infty)$.

Step 1 : Separation of Variables - II

Notice that the LHS of (9) varies with respect to t while the RHS of (9) varies with respect to x. Here is the important argument:

- If these two sides are equal for all x and t then they must be equal to a function that has neither x 's nor t 's.

That is,

$$
\begin{equation*}
\frac{\dot{G}(t)}{c^{2} G(t)}=\frac{F^{\prime \prime}(x)}{F(x)}=-\lambda \in \mathbb{R}, \tag{10}
\end{equation*}
$$

where λ is called the 'separation constant'. From this we have,

$$
\begin{align*}
\dot{G} & =-c^{2} \lambda G, \tag{11}\\
F^{\prime \prime} & +\lambda F=0 . \tag{12}
\end{align*}
$$

Step 2: Solving the ODE's

The temporal problem is easy:

$$
\begin{equation*}
\dot{G}=-c^{2} \lambda G \Rightarrow G(t)=\alpha e^{-c^{2} \lambda t}, \alpha \in \mathbb{R} \tag{13}
\end{equation*}
$$

The spatial problem is not as easy. Remember that the physical problem mandates the spatial interface conditions (4), which must be applied at this point. First, we note,

$$
\begin{gather*}
u(0, t)=F(0) G(t)=0 \Rightarrow F(0)=0 \text { or } G(t)=0, \tag{14}\\
u(L, t)=F(L) G(t)=0 \Rightarrow F(L)=0 \text { or } G(t)=0 \tag{15}
\end{gather*}
$$

If $G(t)=0$ for all t then $u(x, t)=F(x) G(t)=0$ for all t. This is the trivial solution, which we ignore. Thus,

$$
\begin{equation*}
F(0)=0, \quad F(L)=0 . \tag{16}
\end{equation*}
$$

Step 2 : Solving the BVP - I

We now have the boundary value problem,

$$
\begin{gather*}
F^{\prime \prime}(x)+\lambda F(x)=0, \quad \lambda \in \mathbb{R} \tag{17}\\
F(0)=0, F(L)=0 \tag{18}
\end{gather*}
$$

If $F(x)=e^{r x}$ then $F^{\prime \prime}+\lambda F=e^{r x}\left(r^{2}+\lambda\right)=0$ and $r= \pm \sqrt{-\lambda}$.
We now have the three general solutions, which depend on λ :
$\lambda>0: F_{1}(x)=c_{1} e^{i \sqrt{\lambda} x}+c_{2} e^{-i \sqrt{\lambda} x}=b_{1} \sin (\sqrt{\lambda} x)+b_{2} \cos (\sqrt{\lambda} x)$
$\lambda<0: F_{2}(x)=c_{3} e^{\sqrt{|\lambda|} x}+c_{4} e^{-\sqrt{|\lambda|} x}=b_{3} \sinh (\sqrt{|\lambda|} x)+b_{4} \cosh (\sqrt{|\lambda|} x)$
$\lambda=0: F_{3}=c_{5} e^{0}+c_{6} x e^{0}=b_{5} x+b_{6}$
From these we must find all nontrivial functions, which also satisfy (18).

Step 2: Solving the BVP - II

Geometry indicates $b_{2}=b_{3}=b_{4}=b_{5}=b_{6}=0$ and,

$$
\begin{equation*}
F(L)=b_{1} \sin (\sqrt{\lambda} L)=0 \Rightarrow b_{1}=0 \text { or } \sin (\sqrt{\lambda} L)=0 . \tag{19}
\end{equation*}
$$

Setting $b_{1}=0$ would imply that $F(x)=0$ for all x and consequently $u(x, t)$ is trivial. Thus we require,

$$
\begin{equation*}
\sin (\sqrt{\lambda} L)=0 \Rightarrow \sqrt{\lambda} L=n \pi, n=1,2,3, \ldots \tag{20}
\end{equation*}
$$

which implies that there are countably-infinitely many λ 's and functions that solve the BVP given by,

$$
\begin{equation*}
F_{n}(x)=b_{n} \sin \left(\sqrt{\lambda_{n}} x\right)=b_{n} \sin \left(\frac{n \pi}{L} x\right), n=1,2,3, \ldots \tag{21}
\end{equation*}
$$

Step 2: BVP - Details

Geometric arguments are always fast but often hide the details. Using algebra instead of geometry gives,

$$
\begin{array}{ll}
F_{1}(0)=b_{1} \sin (\sqrt{\lambda} \cdot 0)+b_{2} \cos (\sqrt{\lambda} \cdot 0)=b_{2}=0 & \Rightarrow b_{2}=0 \\
F_{2}(0)=b_{3} \sinh (\sqrt{|\lambda|} \cdot 0)+b_{4} \cosh (\sqrt{|\lambda|} \cdot 0)=b_{4}=0 & \Rightarrow b_{4}=0 \\
F_{3}(0)=b_{5} \cdot 0+b_{6}=b_{6}=0 & \Rightarrow b_{6}=0 \\
F_{2}(L)=b_{3} \sinh (\sqrt{|\lambda|} L)=b_{3}\left(\frac{e^{\sqrt{|\lambda|} L}-e^{-\sqrt{|\lambda|} L}}{2}\right)=0 & \Rightarrow b_{3}=0 \\
F_{3}(L)=b_{5} L=0 & \Rightarrow b_{5}=0
\end{array}
$$

Step 3 : General Solution as a Linear Combination

We now have that $\sqrt{\lambda_{n}}=n \pi / L$, which implies temporal solutions given by,

$$
\begin{equation*}
G_{n}(t)=\alpha_{n} e^{-c^{2} \lambda_{n} t}=\alpha_{n} e^{-\left(\frac{c n \pi}{L}\right)^{2} t}, \quad n=1,2,3, \ldots, \tag{22}
\end{equation*}
$$

and many solutions u_{n} to (1) given by,

$$
\begin{align*}
u_{n}(x, t) & =F_{n}(x) G_{n}(t)=b_{n} \alpha_{n} \sin \left(\sqrt{\lambda_{n}} x\right) e^{-c^{2} \lambda_{n} t} \tag{23}\\
& =B_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\left(\frac{c n \pi}{L}\right)^{2} t}, n=1,2,3, \ldots \tag{24}
\end{align*}
$$

Since (1) is linear the linear combination of solutions is also a solution. Thus the general solution is given by,

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\left(\frac{c n \pi}{L}\right)^{2} t} \tag{25}
\end{equation*}
$$

Step 3: Application of the Initial Condition

We still have unknown constants B_{n} but we haven't used,

$$
\begin{equation*}
u(x, 0)=f(x) . \tag{26}
\end{equation*}
$$

From the general solution we have,

$$
\begin{align*}
u(x, 0)=f(x) & =\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\left(\frac{c n \pi}{L}\right)^{2} \cdot 0} \tag{27}\\
& =\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right), \tag{28}
\end{align*}
$$

which is a Fourier sine series. Thus, we have that B_{n} are Fourier coefficients given by,

$$
\begin{equation*}
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x . \tag{29}
\end{equation*}
$$

We have found the evolution of (3) modeled by (1) subject to (4). From this we note:

- The initial condition $f(x)$ has a Fourier sine half-range expansion.
- The general solution evolves each mode in the Fourier expansion of f by a factor of $e^{-c^{2} \lambda_{n} t}$.
- The separation assumption of $u(x, t)=F(x) G(t)$ was not too restrictive since λ_{n} shares information between the spatial and temporal components.
- The PDE (1) defines an infinite-dimensional space with a Fourier basis. Thus, solutions to (1) can represented as linear combination in this basis.

