MATH 225 - Differential Equations
Homework 5, Field 2008

May 29, 2008
Due Date: June 3, 2008

Linear Equations - Complex/Repeated/Zero Eigenvalues - Trace Determinant Plane

1. Given that $\frac{d \mathbf{Y}}{d t}=\mathbf{A} \mathbf{Y}$ where $\mathbf{A}=\left[\begin{array}{rr}-2 & -3 \\ 3 & -2\end{array}\right]$.
(a) Find the real valued general solution of this system.
(b) Using HPGSystemSolver plot the phase portrait and classify the equilibrium solution.
2. Given that $\frac{d \mathbf{Y}}{d t}=\mathbf{A Y}$ where $\mathbf{A}=\left[\begin{array}{rr}-3 & 10 \\ -1 & 3\end{array}\right]$.
(a) Find the real valued general solution of this system.
(b) Using HPGSystemSolver plot the phase portrait and classify the equilibrium solution.
3. Given that $\frac{d \mathbf{Y}}{d t}=\mathbf{A} \mathbf{Y}$ where $\mathbf{A}=\left[\begin{array}{rr}-3 & 1 \\ 3 & -1\end{array}\right]$.
(a) Find the general solution of this system.
(b) Using HPGSystemsolver plot the phase portrait and classify the equilibrium solutions.
4. Given that $\frac{d \mathbf{Y}}{d t}=\mathbf{A} \mathbf{Y}$ where $\mathbf{A}=\left[\begin{array}{rr}-5 & 1 \\ -1 & -3\end{array}\right]$.
(a) Find the solution of this system assuming that $\mathbf{Y}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$.
(b) Using HPGSystemSolver plot the phase portrait and classify the equilibrium solution.
5. Given the general two-dimensional autonomous system of linear ODE's,

$$
\left[\begin{array}{l}
x^{\prime}(t) \tag{1}\\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right],
$$

draw and label all off-axis equilibrium points in the trace-determinant plane.

Using the program TDAnimation discuss the changes to both the number and classification of equilibrium points as the TD-plane is traversed by the program.

Hw6 Sol. (Abbreviated)

1. $A=\left[\begin{array}{cc}-2 & -3 \\ 3 & -2\end{array}\right]$.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=(-2-\lambda)^{2}+9=\lambda^{2}+2 \lambda+4+9= \\
&=\lambda^{2}+\lambda+13=0 \\
& \Rightarrow \lambda=-2 \pm 3 i \\
& {[A-\lambda I] \vec{v}=\overrightarrow{0} \Rightarrow \quad-3 i v_{1}=3 v_{2} \Rightarrow \nabla^{(1)}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right], \vec{V}^{(2)}=\left[\begin{array}{l}
1 \\
i
\end{array}\right] }
\end{aligned}
$$

Real Valued Sol.

$$
\bar{Y}(t)=k_{1} e^{-2 t}\left[\begin{array}{l}
\cos (3 t) \\
\sin (3 t)
\end{array}\right]+k_{2} e^{-2 t}\left[\begin{array}{l}
\sin (3 t) \\
-\cos (3 t)
\end{array}\right]
$$

2) $\operatorname{det}\left(\left[\begin{array}{cc}-3-\lambda & 10 \\ -1 & 3-\lambda\end{array}\right]\right)=(3-\lambda)(-3-\lambda)+10=$

$$
\begin{aligned}
& =\lambda^{2} \quad-9+10=0 \\
& \Rightarrow \lambda= \pm i
\end{aligned}
$$

$$
\begin{array}{ll}
{[A-\lambda I] \vec{\delta}=\overrightarrow{0} \Rightarrow(-3+-i) v_{1}+10 v_{2}=0} & \Rightarrow v_{1}=10, v_{2}=3+i \\
\text { Real Valued Soln } & \Rightarrow \vec{v}^{\prime \prime \prime}=\left[\begin{array}{l}
10 \\
3+i
\end{array}\right] \vec{v}_{3}^{32}=\left[\begin{array}{l}
10 \\
3-i
\end{array}\right]
\end{array}
$$

$$
\bar{Y}(t)=k_{1}\left[\begin{array}{l}
10 \cos (3 t) \\
3 \cos (3 t)-\sin (3 t)
\end{array}\right]+k_{2}\left[\begin{array}{l}
10 \sin (3 t) \\
3 \sin (3 t)+\cos (3 t)
\end{array}\right]
$$

$$
\text { 3) } \left.\begin{array}{rl}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 1 \\
13 & -b-\lambda
\end{array}\right]\right)= \\
=(-3-\lambda)(-1-\lambda)-3=\lambda^{2}+3 \lambda+\lambda+3-3= \\
& =\lambda^{2}+4 \lambda \cdot 3 \lambda_{1}=\lambda(\lambda+4)=0 \\
\lambda_{1} & =0, \lambda_{2}=-4
\end{array} \quad \begin{array}{rl}
{\left[A-\lambda_{1} I\right] \vec{v}} & =\overrightarrow{0} \Rightarrow 3 v_{1}=v_{2} \Rightarrow \vec{v}^{(1)}=[1 \\
3
\end{array}\right] .
$$

General Soln:

$$
\vec{Y}(t)=k_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right] e^{0 t}+k_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-4 t}
$$

4)

$$
\begin{aligned}
& \dot{\operatorname{det}}(A-\lambda I)=(-5-\lambda)(-3-\lambda)+1= \\
&=\lambda^{2}+8-2 \lambda \quad \lambda^{2}+16+8 \lambda=(\lambda+4)^{2}=0 \\
& {[A-\lambda I] \vec{v} }=\overrightarrow{0} \Rightarrow-4 \\
&
\end{aligned}
$$

General Soln:

$$
\vec{Y}(t)=\left(\left[\begin{array}{l}
x_{0} \\
x_{0}
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) e^{-4 t}
$$

5) See Text or Class notes for $T-D$ diagram
Also see $T-D$ animation
