E. Kreyszig, Advanced Engineering Mathematics, $9^{\text {th }}$ ed. \quad Section 11.4, pgs. $47 \mathrm{xx}-4 \mathrm{xx}$

Lecture: Fourier Series Module: 10

Suggested Problem Set: $\{2,9,11\}$

Quote of Lecture 10

Juliet: What's in a name? That which we call a rose by any other name would smell as sweet.

Shakespeare: Romeo and Juliet (1591)

1 Review

So, at this point we have the following,

$$
\begin{align*}
f(x) & =a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)+b_{n} \sin \left(\frac{n \pi}{L} x\right) \tag{1}\\
a_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(x) d x \tag{2}\\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x \tag{3}\\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x \tag{4}
\end{align*}
$$

which defines the Fourier series and it's associated coefficients for a $2 L$-periodic function, where L is a scaling parameter introduced to control the length of the period. We also have the following important results:

- Any function for, which the integrals (2)-(4) are defined has a Fourier series representation. Notice that this does not require the function to be periodic, but the Fourier series will induce this function to be periodic with principle domain (-L,L).
- The Fourier series may actually differ from the function $f(x)$ at a countably infinite amount of points. We can know where this might occur by knowing the jump-discontinuities of f and we have that the Fourier series will average the right and left hand limits at these points.
- The Fourier series represents the function f in terms of it's oscillatory features for which the data f supplies the amplitudes for each oscillatory mode. ${ }^{1}$
- The Fourier series represents the function f in terms of it's even components and odd components. ${ }^{2}$

2 Lecture Overview

Now we are going to make use of the well celebrated Euler's formula,

$$
\begin{equation*}
e^{i \theta}=\cos (\theta)+i \sin (\theta), \quad i=\sqrt{-1} \tag{5}
\end{equation*}
$$

so that we can rewrite (1)-(4) in its complex form,

$$
\begin{align*}
f(x) & =\sum_{n=-\infty}^{\infty} c_{n} e^{-i \frac{n \pi}{L} x} \tag{6}\\
c_{n} & =\frac{1}{2 L} \int_{-L}^{L} f(x) e^{i \frac{n \pi}{L} x} d x \tag{7}
\end{align*}
$$

[^0]which is tidy but lacks some of the clarity of the real-form. ${ }^{3}$ From this form one can always derive the real Fourier series form and moreover if the function f is symmetric then this immediately simplifies to a Fourier cosine or Fourier sine series. The following outlines some pros and cons:

Pro: We need only remember 2 formula instead of 4 .
Pro: Integrations involving exponential functions greatly simplify.
Con: The case for when n is often a special case (notice that $c_{0}=a_{0}$) where the coefficient becomes singular due to anti-differentiation of the exponential function.
Con: From the complex form the graph of the periodic function is not as accessible.
Lastly, to calculate the energy in a 'signal' we note that the energy of a sinusoid is proportional the square of it's amplitude ${ }^{4}$ then we can conclude that the energy of a signal can be found by it's Fourier coefficients as

$$
\begin{equation*}
E \propto a_{0}^{2}+\sum_{n=1}^{\infty} a_{n}^{2}+b_{n}^{2} \tag{9}
\end{equation*}
$$

however in (6)-(7) the Fourier coefficients may be complex and the connection to energy is not as clear. In this case we have the following:

$$
\begin{equation*}
E \propto \sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \tag{10}
\end{equation*}
$$

where $\left|c_{n}\right|^{2}=c_{n} \bar{c}_{n} .{ }^{5}$

3 Lecture Goals

Our goals with this material will be:

- Understand the connections both similarities and differences between complex and real Fourier series representations of functions.

4 Lecture Objectives

The objectives of these lessons will be:

- Derive the complex Fourier series using the real Fourier series and associated coefficients.
- Learn to convert the complex Fourier series into a real Fourier series through algebraic simplifications.

[^1]
[^0]: ${ }^{1}$ Each term in the series is called a Fourier mode and the lowest order term is often called the Fundamental mode.
 ${ }^{2}$ If the function f has symmetry then the equations (1)-(4) simplify according to the intal properties of symmetric functions.

[^1]: ${ }^{3}$ The coefficients, which we derive from a_{n} and b_{n} in class, can also be derived from the following orthogonality relation:

 $$
 \begin{equation*}
 \left\langle e^{-i \frac{n \pi}{L}}, e^{-i \frac{m \pi}{L}}\right\rangle=2 L \delta_{n m} \tag{8}
 \end{equation*}
 $$

 ${ }^{4}$ http:/.glenbrook.k12.il.us/gbssci/phys/Class/waves/u1012c.html
 ${ }^{5}$ Here the 'bar' denotes complex conjugation. If $z=\alpha+\beta i$ then $\bar{z}=\alpha-\beta i$ and one can easily conclude that $z \bar{z} \in \mathbb{R}$ as we would expect for a quantity like energy.

