7
 NL mixing solutions

SFG, DFG, SHG, OPA,...

Laser sources

- Many applications (industrial, commercial, scientific) require affordable, efficient lasers at particular wavelengths.
- But lasers aren't available at all wavelengths.
- Laser wavelength chart
- Dye lasers can make most wavelengths:
- messy, not compact, unhealthy, hard to change dye

- Harmonic conversion and parametric amplification allow a solid-state alternative.

Intracavity doubling: Green laser pointer

- Pump: laser diode
- Laser: Nd:vanadate
- Frequency conversion:
- Intracavity doubling in KTP

- Type II allowuse of both polarization components of IR
- HR reflects IR and green
- OC reflects most IR, passes green

Difference-Frequency Generation: Optical Parametric Generation, Amplification, Oscillation

Difference-frequency generation takes many useful forms.

Parametric Down-Conversion (Difference-frequency generation) spontaneous down conversion

Optical Parametric Amplification (OPA)

By convention: $\mathrm{w}_{\text {signal }}>\mathrm{w}_{\text {idler }}$

Optical Parametric Oscillation (OPO)

Optical

Parametric Generation

OPG:

- one strong pump
- spontaneous splitting of photon energy
- Amplification on the way out
- Tuning from phase matching angle
dler:

Sibbett, et al., Opt. Lett., 22, 1397 (1997).

Phase-matching in OPA

We can vary the crystal angle in the usual manner, or we can vary the crystal temperature (since n depends on T).

Difference frequency mixing for far-IR generation

Typically start with both outputs of an OPA.

With unusual crystals, such as $\mathrm{AgGaS}_{2}, \mathrm{AgGaSe}_{2}$ or
GaSe, one can obtain
radiation to wavelengths as long as $20 \mu \mathrm{~m}$.

These long wavelengths are useful for vibrational spectroscopy.

Gavin D. Reid, University of Leeds, and Klaas Wynne, University of Strathclyde

Difference-
frequency generation in GaSe

Angle-tuned wavelength

Elsaesser, et al., Opt. Lett., 23, 861 (1998)

NL coupled equations for $2^{\text {nd }}$ order mixing

- NL equations valid for
- Sum frequency mixing
- Difference frequency mixing (DFG, OPA, OPO, SPDC)
- Define by choosing initial conditions, assumptions about which waves are the strongest
$\frac{d A_{1}}{d z}=\frac{2 i d_{\text {eff }} \omega_{1}{ }^{2}}{k_{1} c^{2}} A_{3} A_{2}^{*} e^{-i \Delta k z}$
$\Delta k=k_{1}+k_{2}-k_{3}$
$\omega_{3}=\omega_{1}+\omega_{2}$
$\frac{d A_{2}}{d z}=\frac{2 i d_{e f f} \omega_{2}{ }^{2}}{k_{2} c^{2}} A_{3} A_{1}^{*} e^{-i \Delta k z}$
$\frac{d A_{3}}{d z}=\frac{2 i d_{e f f} \omega_{3}{ }^{2}}{k_{3} c^{2}} A_{1} A_{2} e^{+i \Delta k z}$

Difference frequency mixing

Simplify mixing equations

- Set up mixing equations

$$
\begin{aligned}
& \omega_{3}=\omega_{1}+\omega_{2} \quad \Delta k=k_{1}+k_{2}-k_{3} \\
& \frac{d A_{1}}{d z}=\frac{2 i d_{e f f} \omega_{1}^{2}}{k_{1} c^{2}} A_{3} A_{2}^{*} e^{-i \Delta k z}=i \xi \frac{\omega_{1}}{n_{1}} A_{3} A_{2}^{*} e^{-i \Delta k z} \\
& \frac{d A_{2}}{d z}=\frac{2 i d_{e f f} \omega_{2}^{2}}{k_{2} c^{2}} A_{3} A_{1}^{*} e^{-i \Delta k z}=i \xi \frac{\omega_{2}}{n_{2}} A_{3} A_{1}^{*} e^{-i \Delta k z} \\
& \frac{d A_{3}}{d z}=\frac{2 i d_{e f f} \omega_{3}^{2}}{k_{3} c^{2}} A_{1} A_{2} e^{+i \Delta k z}=i \xi \frac{\omega_{3}}{n_{3}} A_{1} A_{2} e^{+i \Delta k z}
\end{aligned}
$$

$$
\xi=\frac{2 d_{e f f}}{c}
$$

- Initial conditions determine which equations to use
- SFG example: Start with amplitude at A_{1} and $\mathrm{A}_{2}, \mathrm{~A}_{3}=0$

Upconversion

- Want to shift weak IR emission $\left(\lambda_{1}\right)$ to visible frequency to make it easier to detect
- Mix with strong visible beam $\left(\lambda_{2}\right)$ to upshift signal to visible - Ex: $\lambda_{1}=2500 \mathrm{~nm}, \lambda_{2}=532 \mathrm{~nm}, \lambda_{3}=$?

Upconversion

- Want to shift weak IR emission $\left(\lambda_{1}\right)$ to visible frequency to make it easier to detect
- Mix with strong visible beam $\left(\lambda_{2}\right)$ to upshift signal to visible
$\begin{array}{ll}-\mathrm{Ex}: \lambda_{1}=2500 \mathrm{~nm}, \lambda_{2}=532 \mathrm{~nm}, \lambda_{3}=439 \mathrm{~nm} & \frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \text { Approximations: }\end{array}$
- Perfect phase-matching $\quad \Delta k=0$
- Nondepleted pump $\frac{d A_{2}}{d z}=0$

$$
\frac{d A_{1}}{d z}=i \xi \frac{\omega_{1}}{n_{1}} A_{3} A_{2}^{*} e^{-i \Delta k z}=i \xi \frac{\omega_{1}}{n_{1}} A_{2}^{*} A_{3} \quad \frac{d A_{3}}{d z}=i \xi \frac{\omega_{3}}{n_{3}} A_{1} A_{2}
$$

Combine $21^{\text {st }}$ order equations to one $2^{\text {nd }}$ order

$$
\frac{d^{2} A_{1}}{d z^{2}}=i \xi \frac{\omega_{1}}{n_{1}} A_{2}^{*} \frac{d A_{3}}{d z}=\left(i \xi \frac{\omega_{1}}{n_{1}} A_{2}^{*}\right)\left(i \xi \frac{\omega_{3}}{n_{3}} A_{1} A_{2}\right)
$$

Solutions for up converted signal

- Growth of signal (at shortest wavelength) follows

SHO equation: $\frac{d^{2} A_{1}}{d z^{2}}=-\xi^{2} \frac{\omega_{1}}{n_{1}} \frac{\omega_{3}}{n_{3}}\left|A_{2}\right|^{2} A_{1}=-\kappa^{2} A_{1}$

$$
\begin{array}{ll}
\frac{d^{2} A_{1}}{d z^{2}}=-\kappa^{2} A_{1} & \kappa^{2}=\xi^{2} \frac{\omega_{1} \omega_{3}}{n_{1} n_{3}}\left|A_{2}\right|^{2}=\frac{4 d_{e f f}^{2} \omega_{1} \omega_{3}}{n_{1} n_{3} c^{2}}\left|A_{2}\right|^{2} \\
& \kappa \text { is real and has dimensions 1/length }
\end{array}
$$

General form of solution for arbitrary initial conditions:
$A_{1}(z)=B \cos \kappa z+C \sin \kappa z$
$A_{1}^{\prime}(z)=-B \kappa \sin \kappa z+C \kappa \cos \kappa z=i \xi \frac{\omega_{1}}{n_{1}} A_{2}^{*} A_{3}$
Solve for the wave that is being upconverted:

$$
A_{3}(z)=\frac{1}{i \xi \frac{\omega_{1}}{n_{1}} A_{2}^{*}}(-B \kappa \sin \kappa z+C \kappa \cos \kappa z)=-i \frac{n_{1}}{\xi \omega_{1} A_{2}^{*}}(-B \kappa \sin \kappa z+C \kappa \cos \kappa z)
$$

Upconversion solutions

- Solution is valid for any initial condition, as long as A_{2} is constant
$A_{1}(z)=B \cos \kappa z+C \sin \kappa z \quad A_{3}(z)=-i \frac{n_{1}}{\xi \omega_{1} A_{2}^{*}}(-B \kappa \sin \kappa z+C \kappa \cos \kappa z)$
- Apply initial conditions: for upconversion, no A_{3} at input, weak A_{1}
$A_{1}(z)=A_{1}(0) \cos \kappa z \quad A_{3}(z)=i A_{1}(0) \frac{n_{1} \kappa}{\xi \omega_{1} A_{2}^{*}} \sin \kappa z$
$\left|A_{3}(z)\right|^{2}=\left|A_{1}(0)\right|^{2}\left|\frac{n_{1} \kappa}{\xi \omega_{1} A_{2}^{*}}\right|^{2} \sin ^{2} \kappa z=\left|A_{1}(0)\right|^{2}\left|\frac{n_{1} c}{2 d_{\text {eff }} \omega_{1} A_{2}^{*}}\right|^{2} \frac{4 d_{e f f}^{2} \omega_{1} \omega_{3}}{n_{1} n_{3} c^{2}}\left|A_{2}\right|^{2} \sin ^{2} \kappa z$
$\left|A_{3}(z)\right|^{2}=\left|A_{1}(0)\right|^{2} \frac{n_{1} \omega_{3}}{n_{3} \omega_{1}} \sin ^{2} \kappa z \quad \begin{aligned} & \text { Signal oscillates, so pick length (or pump intensity) } \\ & \text { carefully }\end{aligned}$
- Max conversion corresponds to photon energy ratio
$\left|A_{3}(z)\right|^{2} \approx\left|A_{1}(0)\right|^{2} \frac{4 d_{e f f}^{2} \omega_{3}^{2}}{n_{3}^{2} c^{2}}\left|A_{2}\right|^{2} z^{2} \quad$ for small z

Parametric amplification

- Difference frequency mixing, no phase mismatch
- Strong, constant pump A_{3}
- Weak seed at A_{1} (Signal)

$$
\omega_{2}=\omega_{3}-\omega_{1} \quad \Delta k=k_{1}+k_{2}-k_{3}
$$

$\frac{d A_{1}}{d z}=i \xi \frac{\omega_{1}}{n_{1}} A_{3} A_{2}^{*} e^{-i \Delta k z} \quad \frac{d A_{2}}{d z}=i \xi \frac{\omega_{2}}{n_{2}} A_{3} A_{1}^{*} e^{-i \Delta k z} \quad \frac{d A_{3}}{d z}=i \xi \frac{\omega_{3}}{n_{3}} A_{1} A_{2} e^{+i \Delta k z}$

- Simplify equations, set up a $2^{\text {nd }}$ order equation for $\mathrm{A}_{2}(\mathrm{z})$

Parametric amplification

- Difference frequency mixing, no phase mismatch
- Strong, constant pump A_{3}

$$
\begin{aligned}
& \omega_{2}=\omega_{3}-\omega_{1} \\
& \Delta k=k_{1}+k_{2}-k_{3}=0 \quad \frac{d A_{3}}{d z}=i \xi \frac{\omega_{3}}{n_{3}} A_{1} A_{2} e^{+i \Delta k z}=0 \\
& \frac{d A_{1}}{d z}=i \xi \frac{\omega_{1}}{n_{1}} A_{3} A_{2}^{*} e^{-i \Delta k z} \rightarrow i \xi \frac{\omega_{1}}{n_{1}} A_{3} A_{2}^{*} \quad \frac{d A_{2}}{d z}=i \xi \frac{\omega_{2}}{n_{2}} A_{3} A_{1}^{*} e^{-i \Delta k z} \rightarrow i \xi \frac{\omega_{2}}{n_{2}} A_{3} A_{1}^{*} \\
& \rightarrow \frac{d^{2} A_{1}}{d z^{2}}=i \xi \frac{\omega_{1}}{n_{1}} A_{3} \frac{d A_{2}^{*}}{d z} \quad \quad \frac{d A_{2}^{*}}{d z}=-i \xi \frac{\omega_{2}}{n_{2}} A_{3}^{*} A_{1} \\
& \frac{d^{2} A_{1}}{d z^{2}}=\left(i \xi \frac{\omega_{1}}{n_{1}} A_{3}\right)\left(-i \xi \frac{\omega_{2}}{n_{2}} A_{3}^{*} A_{1}\right)=+\xi^{2} \frac{\omega_{1}}{n_{1}} \frac{\omega_{2}}{n_{2}}\left|A_{3}\right|^{2} A_{1}=+\kappa^{2} A_{1} \\
& \frac{d^{2} A_{2}}{d z^{2}}=+\kappa^{2} A_{2} \quad \text { Because of positive sign, real exponential solutions. }
\end{aligned}
$$

Review: cosh, sinh

- Hyperbolic functions

$\cosh (z)=\frac{1}{2}\left(e^{z}+e^{-z}\right)=\cos (i z) \quad \sinh (z)=\frac{1}{2}\left(e^{z}-e^{-z}\right)=-i \sin (i z)$

$$
\frac{d}{d z} \cosh (a z)=a \sinh (a z) \quad \frac{d}{d z} \sinh (a z)=a \cosh (a z)
$$

$\operatorname{Cosh}(z)$ is even $\operatorname{Sinh}(z)$ is odd

For large $+z$, both are exponentially increasing

Exponential gain in OPA

- Initial conditions: $\mathrm{A}_{1}=\mathrm{A}_{10}$, no input at A_{2}
$A_{1}(z)=A_{1}(0) \cosh \kappa z \quad A_{2}(z)=C \sinh \kappa z+D \cosh \kappa z \rightarrow C \sinh \kappa z$
$\frac{d A_{1}}{d z}=A_{1}(0) \kappa \sinh \kappa z=i \xi \frac{\omega_{1}}{n_{1}} A_{3} A_{2}^{*}=i \xi \frac{\omega_{1}}{n_{1}} A_{3} C^{*} \sinh \kappa z$
$C=i \frac{n_{1} \kappa}{\xi \omega_{1} A_{3}} A_{1}(0) \quad A_{2}(z)=i \frac{n_{1} \kappa}{\xi \omega_{1} A_{3}} A_{1}(0) \sinh \kappa z$
- Both signal and idler have exponential gain instead of quadratic gain.
- For kz>>1,

$$
I_{1}(z) \sim I_{1}(0) \exp [2 \kappa z]
$$

- Presence of signal stimulates production of idler and vice-versa
- Very little net conversion if process is not phase-matched: crystal phase-matching angle tunes output

Gain coefficient

- Gain can be very high:

$$
\begin{aligned}
& 2 \kappa=2 \times 2 d_{\text {eff }} \sqrt{\frac{\omega_{1} \omega_{2}}{c^{2} n_{1} n_{2}}}\left|A_{3}\right|=4 d_{e f f} \sqrt{\frac{\omega_{1} \omega_{2}}{c^{2} n_{1} n_{2}}} \sqrt{\frac{I_{3}}{2 n_{3} \varepsilon_{0} c}} \quad 1 \mathrm{~W} / \mathrm{m}^{2}=10000 \mathrm{~W} / \mathrm{cm} 2=\sqrt{\frac{1}{377}} \mathrm{~V} / \mathrm{m} \\
& \text { - For BBO }
\end{aligned}
$$

$$
2 \kappa \approx 4 d_{e f f} \frac{2 \pi}{n \lambda_{p} / 2} \sqrt{\frac{I_{3}}{n \varepsilon_{0} c / 2}}=\frac{16 \pi}{n} \frac{1}{\lambda_{p}} d_{e f f} \sqrt{\frac{I_{3}}{2 n \varepsilon_{0} c}}
$$

$d_{e f f}=2 \mathrm{pm} / \mathrm{V}$
$n=1.6$
$\kappa \approx 7 \times 10^{-4} \frac{\sqrt{I_{3}\left(\mathrm{~W} / \mathrm{cm}^{2}\right)}}{\lambda_{p}(\mu \mathrm{~m})} / \mathrm{cm}$
$\operatorname{Exp}[14]=10^{6}$
For this single pass gain and $\mathrm{L}=5 \mathrm{~mm}$, need $2 \mathrm{~K}=14 / \mathrm{L}=28 / \mathrm{cm}$
Need about $I_{3}=2 \times 10^{9} \mathrm{~W} / \mathrm{cm}^{2}$

Phase matching for parametric mixing

- For negative uniaxial: n_{e} is lowest, so place ω_{3} as e-wave
- Type I: ω_{1} and ω_{2} parallel polarization, along o-direction
- Generally broader bandwidth for OPA
- Type II: one of lower frequencies is along e-direction
- can separate signal and idler with polarizer
- Quasi-phasematching (2.4), periodic poling

$$
\begin{aligned}
\Delta k & =k_{1}+k_{2}-k_{3} \\
& =\frac{1}{c}\left(\omega_{1} n_{1}+\omega_{2} n_{2}-\omega_{3} n_{3}\right)
\end{aligned}
$$

Note: for wave mixing, phase matching isn't just matching phase velocities or ref. indices. For SHG:
this generalizes to a vector relation

$$
\Delta k=2 k_{1}-k_{2}=\frac{2 \omega_{1}}{c}\left(n_{1}-n_{2}\right)
$$

An ultrafast noncollinear OPA (NOPA)

Continuum generates an arbitrarycolor seed pulse.

```
7(%)
```


Power conservation

- Manley-Rowe relations (2.5)

$$
\frac{d}{d z}\left(\frac{I_{1}}{\omega_{1}}\right)=\frac{d}{d z}\left(\frac{I_{2}}{\omega_{2}}\right)=-\frac{d}{d z}\left(\frac{I_{3}}{\omega_{3}}\right)
$$

- Can use these to reduce the number of coupled equations
- Helpful to understand saturated conversion limits in parametric processes:
- $1 / \hbar \omega=$ photon flux
- For every photon taken from wave 3, we add one to waves 1 and 2
- Example: can avoid back conversion in sum frequency generation only if there isn't any light left in both input beams

Scaling the NL equations

- Using scaled variables can simplify the NL equations and highlight the characteristic parameters
- SHG example $\omega_{2}=2 \omega_{1} \quad \Delta k=2 k_{1}-k_{2}$
2.7.10, 2.7.11

$$
\frac{d A_{1}}{d z}=\frac{2 i d_{e f f} \omega_{1}^{2}}{k_{1} c^{2}} A_{2} A_{1}^{*} e^{-i \Delta k z} \quad \frac{d A_{2}}{d z}=\frac{i d_{e f f} \omega_{2}^{2}}{k_{2} c^{2}} A_{1}^{2} e^{+i \Delta k z}
$$

- Scale the fields to the total intensity
$I_{j}=2 n_{j} \varepsilon_{0} c\left|A_{j}\right|^{2} \quad a_{j}=u_{j} e^{i \phi_{j}}$
$\left|a_{j}\right|^{2}=u_{j}^{2}=\frac{I_{j}}{I}=\frac{2 n_{j} \varepsilon_{0} c}{I}\left|A_{j}\right|^{2} \quad A_{j}=u_{j} \sqrt{\frac{I}{2 n_{j} \varepsilon_{0} c}} e^{i \phi_{j}}$

Writing dimensionless equations

- Rewrite equations with new variables

$$
\begin{aligned}
& \frac{d A_{1}}{d z}=\frac{2 i d_{e f f} \omega_{1}^{2}}{k_{1} c^{2}} A_{2} A_{1}^{*} e^{-i \Delta k z} A_{j}=\sqrt{\frac{I}{2 n_{j} \varepsilon_{0} c}} u_{j} e^{i \phi_{j}}=\sqrt{\frac{I}{2 n_{j} \varepsilon_{0} c}} a_{j} \\
& \frac{d}{d z}\left(u_{1} \sqrt{\frac{I}{2 n_{1} \varepsilon_{0} c}} e^{i \phi_{1}}\right)=\frac{2 i d_{e f f} \omega_{1}}{n_{1} c} u_{2} \sqrt{\frac{I}{2 n_{2} \varepsilon_{0} c}} e^{i \phi_{2}} u_{1} \sqrt{\frac{I}{2 n_{1} \varepsilon_{0} c}} e^{-i \phi_{1}} e^{-i \Delta k z} \\
& \frac{d a_{1}}{d z}=i \frac{2 d_{e f f} \omega_{1}}{n_{1} c} \sqrt{\frac{I}{2 n_{2} \varepsilon_{0} c}} a_{2} a_{1}^{*} e^{-i \Delta k z} \\
& \frac{d A_{2}}{d z}=\frac{i d_{e f f} \omega_{2}^{2}}{k_{2} c^{2}} A_{1}^{2} e^{+i \Delta k z} \quad \sqrt{\frac{I}{2 n_{2} \varepsilon_{0} c}} \frac{d a_{2}}{d z}=i \frac{d_{e f f} 2 \omega_{1}}{n_{2} c} \frac{I}{2 n_{1} \varepsilon_{0} c} a_{1}^{2} e^{+i \Delta k z} \\
& \frac{d a_{2}}{d z}=i \frac{2 d_{e f f} \omega_{1}}{n_{1} c} \sqrt{\frac{I}{2 n_{2} \varepsilon_{0} c}} a_{1}^{2} e^{+i \Delta k z} \quad l=\frac{c}{2 \omega_{1} d_{e f f}} \sqrt{\frac{2 n_{1}^{2} n_{2} \varepsilon_{0} c}{I}}
\end{aligned}
$$

Final form of scaled equations for SHG

$$
\frac{d a_{1}}{d z}=i \frac{1}{l} a_{2} a_{1}^{*} e^{-i \Delta k z} \quad \frac{d a_{2}}{d z}=i \frac{1}{l} a_{1}^{2} e^{+i \Delta k z} \quad\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}=u_{1}^{2}+u_{2}^{2}=1
$$

- Define dimensionless distance variable

$$
\begin{aligned}
& \xi=z / l \\
& \Delta k z=\Delta k l \xi \equiv \Delta s \xi \\
& \frac{d a_{1}}{d \xi}=i a_{2} a_{1}^{*} e^{-i \Delta s} \quad \frac{d a_{2}}{d \xi}=i a_{1}^{2} e^{+i \Delta s \xi}
\end{aligned}
$$

- l is the characteristic distance for energy exchange (saturation and back-conversion)
- If there is no SH present at start, full conversion

Saturated SHG conversion

- No seed SH

- With seed

