Polarization in EM

Plane wave state, arbitrary direction: E(r,t)=E,e®*
In vacuum, D=¢E
vE:O—) ax ay az 'Eoe
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From this we can say that k-E,=0 and k._LE
Therefore, the electric field lies in a plane perpendicular to k

The polarization direction can take on any linear combination of
horizontal and vertical states (this includes circular polarization).



Other vector relations

Similarly,

vxE:—%—]?aikxE:Ha)B SO B_LKk,E

Energy flow is given by the Poynting vector:

S:ExH:iExB SO S.1E,B
Hy
and S|k

These relations hold in any isotropic medium. But if the medium is
anisotropic, the vector relations must be modified.

V-E=0 ?xE:—a—B
ot

V-B=0 vXB:'anE)—]t)



Maxwell's Equations:
linear anisotropic medium

The induced polarization, P, contains the effect of the medium:

V-D=0 VXE = _B_B

ot Define the displacement vector
= = D
V-B=0 VxBZNO%_t D=¢E+P

In an anisotropic medium:
P(E)=¢,j-E, D=¢E+P=¢(l+})E=¢éE

So now D and E are not necessarily parallel.
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Linear anisotropic response

For anisotropic linear response: D, = SOZEUEJ =

' Contracted notation

In a basis aligned with the crystal axes: Repeated indices are summed

Even here, D is not necessarily parallel to E

D, e, 0 O 0 0
DY = O 80 0 EY = 80EY
D, 0 0 ¢ | E €.k,

Uniaxial case:

e = “extraordinary”

_DX_ Eyx O O__EX__SO _EX_
D, |= 0 ¢, O E, E,
D, 0 0 ¢, E, 0 E,

o = “ordinary”



TABLE 1.5.1 Form of the linear susceptibility tensor ¥ as determined by the
symmetry properties of the optical medium, for each of the seven crystal classes
and for isotropic materials. Each nonvanishing element is denoted by its cartesian
indices

Xy
Trclinic ¥y

iy

0
Monoclinic ¥y
0

0
Orthorhombre

{0

Tetragonal x 0
Trigonal xx
Hexagonal 0

0
xx
0

Cubic
[solrupic




The dielectric tensor g; is symmetric in a nonabsorbing medium.
U _ _y.g Continuity equation:

o Rate of change of energy density = - div of power flow
V-S=V-(ExH)=H-(VXE)-E-(VxH)

oB oD
VXE=——,VxH=—

ot ot

=-V-S=E-D+H-B=U,+U, =>U,=E-D=Eg¢,E,

Ly J

In the last step we're identifying the E and M components of the energy density.
But we also know:

UE :EED:>UE :Egz'j(EiEj +EZ-E]-): E(gji +€ij)EiEj

Therefore, the dielectric tensor is symmetric €, =¢;

This 1s an example of an intrinsic symmetry. It comes from the nature of the
thermodynamic requirement that Uy 1s a state function of E, which takes all £; as
independent variables. This does not require the symmetry of the crystal, or the
linearity of the response.



The index ellipsoid

Energy density inside the medium: U, = lD-E— 1

_ et > —ESOZSU.EI.EJ.
see Davis 18.3 for derivation i

The index ellipsoid is a surface of constant energy density
(in the crystal basis):

1 ( D2 D D? 1 ( D: D2 D2
U, = ( Ly L~ ] — ( e e |
2’80 8XX 8YY 8ZZ 2‘90(] 8XX 8YY 8ZZ

Write this with new variables to make the ellipse equation more clear:

2 2

1/2
1 2 2 2 2 2 2

X:( j D, etc. X vy 72 x vy Z
Exx E&w €z n, n n,

26U, l=—4+—+—="—"+—+

In an arbitrary basis, the ellipse equation looks like:

o) o)) el el ol
— | X"+ — + | T2 = | yit2| | x2+2| — =1
) o) o) ol ) el o) »

The indices 1-6 are like the contracted notation we will use for second-order NLO



Wave propagation in birefringent crystals

Inside the medium, V-D=0
So V.D=ik-D=0 and kLD
The wave is described by the D-field inside the medium.

If a wave is linearly polarized, and the D-field is oriented along one of the
crystal axes, the wave sees only the refractive index corresponding to

the direction of D..
D(I/‘,Z) _ Doei(k-r—wt) =% Dzei(kxx_wt) ’ kx _ Qne
C
If k is parallel to one of the axes, but D is not, the input polarization can
be resolved along o- and e- axes:

(0 ()
—n,x—t —n,Xx—0t

D(I’,Z) = Doei(k'r_(w) N iDzei(C ) + yDyei(c )

In Jones vector notation, o
» aec” The vector components
D(rt)= Do( b j% D, © pick up relative phase
be <" shift A¢=2(n0—n )x
C e



Plane wave propagation: general direction

e In an anisotropic medium, the phase velocity of light depends on its
polarization state and its propagation direction.

* For a given propagation direction, there exist in general two waves,
each having its own refractive index (or equivalently phase velocity)
and polarization.

* All light traveling in that direction can be decomposed onto the two

eigenwaves.
define wave unit vector s = E Then V — i@s, i (1))
‘k| c Ot / E
D
V><E=—aa—]?:>H=£s><E 2
Uc
dD n l§ (s)
VXH:E:D:——SXH H (B
¢ S=ExH (t
Relations between the directions of the vectors: (®)
1) D, H, and s are mutually perpendicular.

2) D, E, s, and EXH (energy flow) lie in the same plane.
3) The Poynting vector SSExH is generally not along s.



Using the index ellipsoid: tuning the refractive index
Optic ~_ S
axis 5
The role of the index ellipsoid: D,
For a given arbitrary wave normal direction s, the index [ & /
ellipsoid can be used to N
1) Find the indices of refraction of the two eigenwaves.
2) Find the corresponding directions of the D vectors of
the two eigen waves.

The prescription is as follows:

1)Draw a plane that is through the origin and is
perpendicular to s. This plane intersects the index
ellipsoid surface with a particular intersection ellipse.
2)The lengths of the two semiaxes of the intersection
ellipse, n, and n,, are the two indices of refraction of
the eigenwaves.

3)The two axes of the intersection ellipse are each
parallel to the allowed D vectors of the eigenwaves.
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Computation of the angle-dependent refractive index

The index ellipsoid:

The equation of the index ellipsoid of a uniaxial crystal 1s

x2+y2 ZZ
2 * 2

=1

n

o

ne
n,=.€./& =.€,/&,, ordinary refractive index
n, =€, /&,, extraordinary refractive index

n, >n_ : positive uniaxial crystal — prolate spheroid

n, <n, : negative uniaxial crystal — oblate spheroid

The uniaxial index ellipsoid is rotationally symmetric around the z-axis. Let s
be in the y-z plane with a polar angle q. The two polarization directions of the D
vectors are: D, 1s parallel to the x-axis, D, 1s in the y-z plane and 1s
perpendicular to s.

The corresponding refractive indices are:

n,=n,,
2 : 2 -1/2
1| n (0)cosO n (0)sin@ 2 in>
[ A )2 ] +[ A )2 ] =1:>ne(9)=(00826+8m20] |
nO ne nO ne

When s 1s on the z direction, #n,(0°) = n,. Therefore the z-axis is the optic axis.






A derivation of the angle-dependent refractive index

Put these into 1 (D§+D§+D§]:1= 1 (D§+D§+D§]
equation for ellipsoid: 26U\ & &y €z 26U\ n, n, n
1 H, ‘0 sin’6
20 nez (9) COS2 n Sll’l2 —1
28U, c n, n,
Magnetic U uH: 18 equaldto e!tectrlc U, =U,
energy density “ 2 €nergy density

1 H, 1 2, U, 1

= = =1
2¢) U, ¢ 2eU, u,c® U, UEC’

2 . 2 \!
Finally: nz(e){“’s 9 oSG ]

e 2 2
no ne

The refractive index can be angle-tuned anywhere between n_ and n,.



Phase matching: an important application for the the
angle-dependent refractive index

Recall that for SHG:

%ei(kz 2=yt) — i wzzd AZei(Zklz—Zwlt)
aZ k2C2 1

Energy must be conserved:

Energy
>

0+0 =0, = 0,=20,

Momentum may or may not be conserved:

2
94 194 2 \yhere  Mk=2k —k, ki k

dz  k,’ ki ki

Conversion will be most efficient if Ak=0
0] 20 k
= 2—n(w,)=—"nCw,)
CO CO

n(w)=n(2w ) @ This is the phase-matching condition for SHG



The phase-matching condition for SHG:

n(m)=n2w)

Unfortunately, dispersion prevents this from ever happening!

2
S @
© O
o= C
D =
o

@ Frequency




First Demonstration of Second-Harmonic
Generation

*P.A. Franken, et al, Physical Review Letters 7, p. 118 (1961)

34715 A

Ruby laser 8943 A

Focusing lens
Prism and

-;‘ L
l . .
((( . - Quartz crystal collimating lenses
e :-:';:;:; '. N 0 'y

.................... S
*

- Figure 12.1. Arrangement used in the first experimental demonstration of second-harmonic
generation [1]. A ruby-laser beam at A = 0.694 pm is focused on a quartz crystal, causing the
generation of a (weak) beam at 3\ = 0.347 pm. The two beams are then separated by a prism

" and detected on a photographic plate.

The second-harmonic beam was very weak because the process
wasn’ t phase-matched.



VoLuMme 7, Nu e PHYSICAL REVIEW LETTERS Aucusr 15, 1961

h|nsl‘mllNnsﬁmlmmu|lv||3dzaalnlmnullnmllln:f thotbell |4I$| (AN Ill?ﬂIrll!llfﬁlllllllleﬁllllllrlﬁllllilil’ﬁlImll?ﬁlulm

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The
wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the
second harmonic. The image of the primary beam at 6943 A is very large due to halation.




SHG without phase-matching

Non-depleted pump approximation: treat A, as constant

> 2d
94, _, dA2 iz Integrate: A,(L)=i Azj e dz
aZ k2C kzc 0

2 lAkL_l

dAfL—( )
kzc iAk L

A(L)=i
Convert to intensity 1, =2¢ nzc\A i

2 2

in(AkL/2

. 1 1,(z)= 1 | 24 a)d Iz sm( )
2g,n,c 2g,n,c n,c AkL/?2

w;d’

2
2g,n,n,c

—1L(L)= I3’ sinc® (Ak L /2)

3°1

2 12
W, d 4
=17

As a function of L and fixed |Ak|>0: 1,(L)= —sin® (Ak L /2)

2€,n.1,C
Yield oscillates:

« Period = “coherence length” L., =27 /Ak
« Amplitude proportional to max( ,) o< 1/ Ak?



Light created in real crystals

Far from
phase-matching: SHG crystal
| Output beam
Input beam
Closer to T ——
phase-matching: — SHG crystal
Input beam Output beam

Note that SH beam is brighter as phase-matching is achieved.



Phase-matching Second-Harmonic
Generation using birefringence
Birefringent materials have different refractive indices for different

polarizations. “Ordinary” and “Extraordinary” refractive indices can
be different by up to 0.1 for SHG crystals.

We can now satisfy the
phase-matching condition.

>

Put the highest frequency on the
lowest index: for negative uniaxial
use the extraordinary polarization
for w and the ordinary for 2w:

|

|

|

al) Frequency 200
n(w,0)=n (2m)

n, depends on propagation angle, so we can tune for a given w.
Some crystals have n, < n,, so the opposite polarizations work.

Refractive index




Real crystal dispersion data

Best resource:
Others: crystal manufacturers, Handbook of Optics

Example: B-BBO = barium borate, BaB,O,

n® =2.7405 +

n. =2.3730 +

1.75

170 L

1.65

1601

155F

0.0184 :
22-00179 —001554 A is in micrometers!

0.0128

—0.0044 A*
A*—0.0156

n, < n, everywhere, so

no\ we need to angle tune




Types of phase matching

. Type 1: Ak=2&no(w1)_&”e(w2’9)
— 2w on low index (n,) 0 C
— w on high (n,) =2 (@) =n.(@: 0)

— Opposite polarizations (x¢) tensor allows this)
© Typez: M= (@)+ P (0,6) %n (o,.6)
— 2w on low index (n,) £ < ‘
— Project E, equally on both axes (n, and n,,)
* Type 3:
— “non-critical” or “90°” phase matching
— Temperature-tuned Ak=2%(n0(a)1,T)—ne(a)2,9O,T))
— Only for particular crystals and wavelengths



Practical issues

Phase matching bandwidth
— Type 1 has more BW, choose L of crystal

Group velocity walk-off (for short pulses)
Angular acceptance

Birefringent beam walk-off

Strength of nonlinearity

Crystal damage threshold

Thermal stability:
— typically angle-tuned, temperature stabilized

Available size of crystals, $$



