
Polarization in EM 

    


∇⋅E = 0→ ∂x ∂ y ∂z( ) i E0e

i k⋅r−ω t( )

Plane wave state, arbitrary direction: E r,t( ) = E0ei k⋅r−ω t( )

    


∇⋅E = 0→ ∂x ∂ y ∂z( ) i Ex0e

i k⋅r−ω t( ) Ey0e
i k⋅r−ω t( ) Ez0e

i k⋅r−ω t( )⎛
⎝

⎞
⎠

    

∇⋅E = ∂x Ex0e

i k⋅r−ω t( ) + ∂ y Ey0e
i k⋅r−ω t( ) + ∂z Ez0e

i k⋅r−ω t( )

   ∂x Ex0e
i k⋅r−ω t( ) = Ex0 ∂x e

i kxx+ky y+kzz−ω t( ) = ikx Ex0e
i k⋅r−ω t( )

    

∇⋅E = i kx Ex0 + ky Ey0 + kz Ez0( )ei k⋅r−ω t( ) = ik ⋅E0e

i k⋅r−ω t( ) = 0

From this we can say that    k ⋅E0 = 0 and   k ⊥ E
Therefore, the electric field lies in a plane perpendicular to k 
The polarization direction can take on any linear combination of 
horizontal and vertical states (this includes circular polarization).  

In vacuum,  D = ε0E



Other vector relations 

    


∇⋅E = 0          


∇×E = − ∂B

∂t

∇⋅B = 0          


∇×B = µ0

∂D
∂t

  
S = E× H = 1

µ0

E×B

Similarly, 

so    B ⊥ k,E

Energy flow is given by the Poynting vector: 

    
 

∇×E = − ∂B

∂t
→ ik ×E = +iω B

so    S ⊥ E,B

and    S k

These relations hold in any isotropic medium. But if the medium is 
anisotropic, the vector relations must be modified.  



Maxwell's Equations: 
 linear anisotropic medium 

•  The induced polarization, P,  contains the effect of the medium:  

 

•  In an anisotropic medium: 
    


∇⋅D = 0          


∇×E = − ∂B

∂t

∇⋅B = 0          


∇×B = µ0

∂D
∂t   D = ε0E+ P

Define the displacement vector 

   P E( ) = ε0


χ ⋅E, D = ε0E+ P = ε0 1+


χ( ) ⋅E = ε0


ε ⋅E

So now D and E are not necessarily parallel.  
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
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Linear anisotropic response 

For anisotropic linear response: Di = ε0 ε ijE j
j
∑ = ε0ε ijE j

In a basis aligned with the crystal axes: 
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Uniaxial case:  o = “ordinary” 

  e = “extraordinary” Even here, D is not necessarily parallel to E 
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Contracted notation 
Repeated indices are summed 



Linear tensor χ(1) 

isotropic 

biaxial 

uniaxial 



 

∇⋅S = ∇⋅(E×H) = H ⋅(∇×E)−E ⋅(∇×H)

∇×E = − ∂B
∂t

,  ∇×H = ∂D
∂t

⎫
⎬
⎪

⎭⎪

⇒ −∇⋅S = E ⋅ D+H ⋅ B = UE + UH ⇒ UE = E ⋅ D = Eiε ij Ej

The dielectric tensor εij is symmetric in a nonabsorbing medium.  

This is an example of an intrinsic symmetry. It comes from the nature of the 
thermodynamic requirement that UE is a state function of E, which takes all Ei as 
independent variables.  This does not require the symmetry of the crystal, or the 
linearity of the response. 

∂U
∂t

= −∇⋅S Continuity equation: 
Rate of change of energy density = - div of power flow 

 
UE =

1
2
E ⋅D⇒ UE =

1
2
ε ij ( EiEj + Ei

Ej ) =
1
2
(ε ji + ε ij )Ei

Ej

In the last step we’re identifying the E and M components of the energy density.  
But we also know: 

ε ji = ε ijTherefore, the dielectric tensor is symmetric   



The index ellipsoid 

The index ellipsoid is a surface of constant energy density  
(in the crystal basis): 

 
UE =

1
2
D iE = 1

2
ε0 ε ijEiE j

ij
∑Energy density inside the medium: 

 see Davis 18.3 for derivation 

UE =
1
2ε0

DX
2

ε XX
+ DY

2

εYY
+ DZ

2

εZZ

⎛
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Write this with new variables to make the ellipse equation more clear: 

X = 1
2ε0UE

⎛
⎝⎜

⎞
⎠⎟

1/2

DX etc. 1 = X 2

εXX
+
Y 2

εYY
+
Z 2

εZZ
=
X 2

n2o
+
Y 2

n2o
+
Z 2

n2e

In an arbitrary basis, the ellipse equation looks like: 
1
n2

⎛
⎝⎜

⎞
⎠⎟ 1
x2 +

1
n2

⎛
⎝⎜

⎞
⎠⎟ 2
y2 +

1
n2

⎛
⎝⎜

⎞
⎠⎟ 3
z2 + 2 1

n2
⎛
⎝⎜

⎞
⎠⎟ 4
yz + 2 1

n2
⎛
⎝⎜

⎞
⎠⎟ 5
xz + 2 1

n2
⎛
⎝⎜

⎞
⎠⎟ 6
xy = 1

The indices 1-6 are like the contracted notation we will use for second-order NLO 



Wave propagation in birefringent crystals 
Inside the medium,  
So                         and   
The wave is described by the D-field inside the medium.  
 
If a wave is linearly polarized, and the D-field is oriented along one of the 
crystal axes, the wave sees only the refractive index corresponding to 
the direction of D.. 
 
 
If k is parallel to one of the axes, but D is not, the input polarization can 
be resolved along o- and e- axes: 
 
 
In Jones vector notation,  

    

∇⋅D = ik ⋅D = 0

   

∇⋅D = 0

 k ⊥ D

D r,t( ) = D0ei k⋅r−ω t( ) → ẑDze
i kxx−ω t( ), kx =

ω
c
ne

D r,t( ) = D0ei k⋅r−ω t( ) → ẑDze
i ω
c
nex−ω t

⎛
⎝⎜
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⎟
⎟

The vector components 
pick up relative phase 
shift Δφ = ω

c
n0 − ne( )x



Plane wave propagation: general direction 
•  In an anisotropic medium, the phase velocity of light depends on its 

polarization state and its propagation direction.  
•  For a given propagation direction, there exist in general two waves, 

each having its own refractive index (or equivalently phase velocity) 
and polarization.  

•  All light traveling in that direction can be decomposed onto the two 
eigenwaves. 

 

k (s) 

E 

H (B) 

D 

S=E×H (t) 

a	



a	



define wave unit vector s = k
k

.    Then ∇→ iω n
c
s, ∂
∂t

→−iω

HsDDH

EsHBE

×−=⇒
∂
∂=×∇

×=⇒
∂
∂−=×∇

c
n

t

c
n

t µ

Relations between the directions of the vectors:  
1)   D, H, and s are mutually perpendicular. 
2)   D, E, s, and E×H (energy flow) lie in the same plane. 
3)  The Poynting vector S=E×H is generally not along s. 
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The role of the index ellipsoid: 
For a given arbitrary wave normal direction s, the index 
ellipsoid can be used to 
1)  Find the indices of refraction of the two eigenwaves. 
2)  Find the corresponding directions of the D vectors of 
the two eigen waves. 

The prescription is as follows: 
1) Draw a plane that is through the origin and is 
perpendicular to s. This plane intersects the index 
ellipsoid surface with a particular intersection ellipse. 
2) The lengths of the two semiaxes of the intersection 
ellipse, n1 and n2, are the two indices of refraction of 
the eigenwaves. 
3) The two axes of the intersection ellipse are each 
parallel to the allowed D vectors of the eigenwaves. 

s 

D1 

D2 n2 
n1 

Using the index ellipsoid: tuning the refractive index 
Optic 
axis 



The index ellipsoid: 
The equation of the index ellipsoid of a uniaxial crystal is 

s 

Do 

De 

no  

ne (q) q 

z 

y 

The uniaxial index ellipsoid is rotationally symmetric around the z-axis. Let s 
be in the y-z plane with a polar angle q. The two polarization directions of the D 
vectors are: Do is parallel to the x-axis, De is in the y-z plane and is 
perpendicular to s. 
The corresponding refractive indices are: 
no = no,

ne (θ )cosθ⎡⎣ ⎤⎦
2

no
2 +

ne (θ )sinθ⎡⎣ ⎤⎦
2

ne
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no
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⎪
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When s is on the z direction, ne(0°) = no. Therefore the z-axis is the optic axis. 

Computation of the angle-dependent refractive index 



A derivation of the angle-dependent refractive index 

Let  k = x̂ k sinθ + ẑ k cosθ

x 

z 
θ k = k0ne θ( )

Find the components of D 
that correspond to k 

D k 

∇×H = ∂D
∂t

⇒−iω D = ik ×H
k ×H =

x̂ ŷ ẑ
kx 0 kz
0 H 0 0

= −x̂kzH 0 + ẑkxH 0

Dx =
kzH 0

ω
= H 0

ω
k0ne θ( )cosθ = H 0

c
ne θ( )cosθ

Dz = − kxH 0

ω
= − H 0

ω
k0ne θ( )sinθ = − H 0

c
ne θ( )sinθ



A derivation of the angle-dependent refractive index 

1
2ε0UE

DX
2

ε XX
+ DY

2

εYY
+ DZ

2

εZZ

⎛
⎝⎜

⎞
⎠⎟
= 1= 1

2ε0UE

DX
2

no
2 + DY

2

no
2 + DZ

2

ne
2

⎛
⎝⎜

⎞
⎠⎟

1
2ε0UE

H 0
2

c2
ne
2 θ( ) cos

2θ
no
2 + sin

2θ
ne
2

⎛
⎝⎜

⎞
⎠⎟
= 1

UH = µ0H 0
2

2

Is equal to electric 
energy density 

UH =UE

1
2ε0UE

H 0
2

c2
= 1
2ε0UE

2UH

µ0c
2 =

UH

UE

1
µ0ε0c

2 = 1

Put these into 
equation for ellipsoid: 

Magnetic 
energy density 

Finally:  ne2 θ( ) = cos2θ
no
2 + sin

2θ
ne
2

⎛
⎝⎜

⎞
⎠⎟

−1

The refractive index can be angle-tuned anywhere between ne and no. 



Phase matching: an important application for the the 
angle-dependent refractive index 

Recall that for SHG:  
∂A2
∂z

ei k2 z−ω2t( ) = iω 2
2d

k2c
2 A1

2ei 2k1z−2ω1t( )

where Δk = 2k1 − k2

 ω1 +ω1 =ω 2 ⇒ ω 2 = 2ω1

Energy must be conserved: 

E
ne

rg
y w1 

w1 

w2 

Momentum may or may not be conserved: 
∂A2
∂z

= iω 2
2d

k2c
2 A1

2eiΔk z
1k


1k


   

k2

Conversion will be most efficient if Δk = 0

  
⇒ 2

ω1

c0

n(ω1) =
2ω1

c0

n(2ω1)

1 1( ) (2 )n nω ω= This is the phase-matching condition for SHG 



Phase-matching Second-Harmonic Generation 

( ) (2 )n nω ω=

ω 2ωFrequency"

R
ef

ra
ct

iv
e 
"

in
de

x"
Unfortunately, dispersion prevents this from ever happening! 

The phase-matching condition for SHG: 



First Demonstration of Second-Harmonic 
Generation 

• P.A. Franken, et al, Physical Review Letters 7, p. 118 (1961) 

The second-harmonic beam was very weak because the process 
wasn’t phase-matched. 



First demonstration of SHG:  The Data 
The actual published result… 

Input beam The second harmonic 

Note that the very weak spot due to the second harmonic is missing.  
It was removed by an overzealous Physical Review Letters editor, 
who thought it was a speck of dirt. 



A2 L( ) = iω 2
2d

k2c
2 A1

2L
eiΔk L −1( )
iΔk L

∂A2
∂z

= iω 2
2d

k2c
2 A1

2eiΔk z

SHG without phase-matching 

→ 1
2ε0n2c

I2 z( ) = 1
2ε0n1c

⎛
⎝⎜

⎞
⎠⎟

2

I1
2 ω 2d

n2c
⎛
⎝⎜

⎞
⎠⎟

2

L2
sin Δk L / 2( )

Δk L / 2
⎛
⎝⎜

⎞
⎠⎟

2

→ I2 L( ) = ω 2
2d 2

2ε0n1
2n2c

3 I1
2L2 sinc2 Δk L / 2( )

A2 L( ) = iω 2
2d

k2c
2 A1

2 eiΔk z dz
0

L

∫Integrate: 

I2 = 2ε0n2c A2
2Convert to intensity 

Non-depleted pump approximation: treat A1 as constant 

As a function of L and fixed |Δk|>0:  I2 L( ) = ω 2
2d 2

2ε0n1
2n2c

3 I1
2 4
Δk2

sin2 Δk L / 2( )
Yield oscillates: 
•  Period = “coherence length” 
•  Amplitude proportional to  

Lcoh = 2π / Δk
max I2( )∝1/ Δk2



Input beam 

Light created in real crystals 

Far from  
phase-matching: 

Closer to  
phase-matching: 

SHG crystal 

Input beam 

SHG crystal 

Note that SH beam is brighter as phase-matching is achieved. 

Output beam 

Output beam 



Phase-matching Second-Harmonic 
Generation using birefringence 
Birefringent materials have different refractive indices for different 
polarizations. “Ordinary” and “Extraordinary” refractive indices can 
be different by up to 0.1 for SHG crystals. 

  ne(ω ,θ ) = no(2ω )
ω 2ωFrequency"

R
ef
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ct
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� 

ne

on

ne depends on propagation angle, so we can tune for a given ω. 
Some crystals have ne < no, so the opposite polarizations work. 

We can now satisfy the  
phase-matching condition. 
 
Put the highest frequency on the 
lowest index: for negative uniaxial 
use the extraordinary polarization 
for ω and the ordinary for 2ω: 



Real crystal dispersion data 
•  Best resource: refractiveindex.info 
•  Others: crystal manufacturers, Handbook of Optics 

 
no

2 = 2.7405 + 0.0184
λ 2 − 0.0179

－ 0.0155λ2

Example: β-BBO = barium borate, BaB2O4 

 
ne

2 = 2.3730 + 0.0128
λ 2 − 0.0156

－ 0.0044λ2

λ is in micrometers! 

1.0 1.5 2.0

1.55

1.60

1.65

1.70

1.75

ne < no everywhere, so 
we need to angle tune no 

ne 

λ (µm) 



Types of phase matching 
•  Type 1:  

–  2ω on low index (ne)  
–  ω on high (no) 
–  Opposite polarizations (χ(2) tensor allows this) 

•  Type 2:  
–  2ω on low index (ne) 
–  Project E1 equally  on both axes (no and ne) 

•  Type 3: 
–  “non-critical” or “90o” phase matching 
–  Temperature-tuned 
–  Only for particular crystals and wavelengths 

Δk = 2ω1

c
no ω1( )− ω 2

c
ne ω 2 ,θ( )

= 2ω1

c
no ω1( )− ne ω 2 ,θ( )( )

Δk = ω1

c
no ω1( ) + ω1

c
ne ω1,θ( )− ω 2

c
ne ω 2 ,θ( )

Δk = 2ω1

c
no ω1,T( )− ne ω 2 ,90,T( )( )



Practical issues 
•  Phase matching bandwidth 

–  Type 1 has more BW, choose L of crystal 

•  Group velocity walk-off (for short pulses) 
•  Angular acceptance 
•  Birefringent beam walk-off 
•  Strength of nonlinearity 
•  Crystal damage threshold 
•  Thermal stability:  

–  typically angle-tuned, temperature stabilized 
•  Available size of crystals, $$ 


