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1. How is the Fourier transform related to Fourier series? You should discuss both the periodicity
and number of Fourier modes used in the construction of each.

FT and FS are the same in that they take a function and represent it as the sum of
oscillatory functions multiplied by amplitudes of oscillations. However, they differ by the
number of Fourier modes (terms in the summations) used. In the case of FS there are
countably infinite number of oscillatory functions which depend on a countably infinite
frequency spectrum and these modes are used to construct periodic functions. In the
case of F'T the spectrum must be continuous and thus there are uncountably infinite
modes depending on a continuum of frequencies.

2. What does cross-correlation measure? What would auto-correlation measure?

Correlation is a measure of similarity between two functions. This measure is given in
terms of a convolution integral. If cross-correlation is the measure of similarity between
two functions then auto-correlation is a measure between the function and itself.

3. What is the uncertainty principle as it relates to Fourier transforms? How much power would
be required to send a signal like 6(¢)?

The uncertainty principle for FT says that if a function is localized in one domain then
it is de-localized in the transformed domain. One can interpete this physically as saying
if you know very well the spread of the function in one space then you know very little
about the spread in another space. These two spaces are typically position-momentum
or time-frequency. Using this idea one can show that the FT of a delta function is a
constant function and the power of the signal is the area under the square of this constant
function, which is infinite. Therefore you would need an infinite amount of power to send
a single impulse of signal.
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